AWB-GCN: A Graph Convolutional Network Accelerator with Runtime Workload Rebalancing

Tong Geng1,2, Ang Li2, Runbin Shi4, Chunshu Wu1, Tianqi Wang1, Yanfei Li5, Pouya Haghi1, Antonino Tumeo2, Shuai Che3, Steve Reinhardt3, Martin C. Herbordt1

1Boston University, 2Pacific Northwest National Laboratory, 3Microsoft, 4The University of Hong Kong, 5Zhejiang University

Abstract—Deep learning systems have been successfully applied to Euclidean data such as images, video, and audio. In many applications, however, information and their relationships are better expressed with graphs. Graph Convolutional Networks (GCNs) appear to be a promising approach to efficiently learn from graph data structures, having shown advantages in many critical applications. As with other deep learning modalities, hardware acceleration is critical. The challenge is that real-world graphs are often extremely large and unbalanced; this poses significant performance demands and design challenges.

In this paper, we propose Autotuning-Workload-Balancing GCN (AWB-GCN) to accelerate GCN inference. To address the issue of workload imbalance in processing real-world graphs, three hardware-based autotuning techniques are proposed: dynamic distribution smoothing, remote switching, and row remapping. In particular, AWB-GCN continuously monitors the sparse graph pattern, dynamically adjusts the workload distribution among a large number of processing elements (up to 4K PEs), and, after converging, reuses the ideal configuration. Evaluation is performed using an Intel D5005 FPGA with five commonly-used datasets. Results show that 4K-PE AWB-GCN can significantly elevate PE utilization by 7.7× on average and demonstrate considerable performance speedups over CPUs (3255×), GPUs (80.3×), and a prior GCN accelerator (5.1×).

Index Terms—Graph Neural Network, Graph Convolutional Network, Sparse Matrix Multiplication, Computer Architecture, Machine Learning Accelerator, Dynamic Scheduling

I. INTRODUCTION

Deep learning paradigms such as Convolutional Neural Networks (CNNs) [1] and Recurrent Neural Networks (RNNs) [2] have been applied to a wide range of applications including image classification, video processing, speech recognition, and natural language processing [3]–[7]. These paradigms, however, are only able to extract and analyze latent information from Euclidean data such as images, video, audio, and text [8]–[10]. As a result, the adoption of neural networks is greatly limited in fields with complex relationships among objects. A large (and increasing) number of applications use non-Euclidean data structures that are modeled as graphs. Nodes and edges represent objects and relationships between those objects, respectively, as appropriate for the application. Most of these graphs have a tremendously large numbers of nodes; moreover, the node degree generally varies dramatically, often following a power law distribution [11]–[17].

The irregularity of the graph data makes most of the existing Neural Network (NN) algorithms ill-suited; critical feature extraction operations, such as convolutions, are no longer applicable. To tackle this issue, Graph Neural Networks (GNNs) have been proposed, in various forms, to extend deep learning approaches to graph data [8], [18]–[25]. Among various GNNs, the Graph Convolutional Network (GCN), an approach that marries some ideas of CNNs to the distinct needs of graph data processing, has demonstrated significant potential and become one of the most important topics in NN-based graph research [26]–[30].

With the rapid development of GCNs, designing dedicated hardware accelerators has become an urgent issue [31]. GCNs have already been investigated in a large number of real-world applications [8], including electric grid cascading failure analysis [32], prediction of chemical reactivity [33], prediction of synthesized material properties [34], polypharmacy side-effect modeling [35], accurate advertisement in E-commerce [36], and cybersecurity [37]. Many of these applications pose stringent constraints on latency and throughput.

Accelerators developed for other domains, such as the sparse-CNN-accelerator (SCNN) [38]–[40], are not likely to be optimal as GCN accelerators. There are several reasons. (i) GCN applications have highly unbalanced non-zero data distributions: non-zeros can be clustered or appear in only a few rows. This leads to computing challenges [11]–[13] due to workload imbalance [14]. Figure 1 compares the distribution of non-zeros between a typical adjacency matrix in a GCN and a typical sparse-weight matrix in a CNN: the distribution of non-zeros is much more balanced in the SCNN. (ii) Extremely high sparsity: The sparsity of a graph adjacency matrix often exceeds 99.9%, while the sparsity of SCNNs generally ranges from 10% to 50%. Therefore, in GCNs the indices of consecutive non-zero elements are often highly scattered; this makes it a major challenge to identify and access sufficient valid non-zero pairs to feed a large number of PEs per cycle at an acceptable hardware cost (see Section 6). (iii) Large matrix size. Real-world graphs are usually very large. For example, the Reddit graph has 233K nodes and 115M edges. Its 233K×233K adjacency matrix requires 1.7Tb storage in dense format or 11.0Gb in sparse format, which usually cannot fit into on-chip memory. Although neural networks also have large models, the
matrix of a particular layer is often much smaller, e.g., $1k \times 1k$, so the working set often can fit easily into on-chip memory.

For these reasons, novel and efficient accelerator designs are urgently required to accelerate GCN workloads. We therefore propose AWB-GCN, a hardware accelerator for GCN inference with workload auto-tuning. It monitors the workload distribution at three levels at runtime and, accordingly, rebalances the distribution per round\(^1\).

Three techniques are proposed: distribution smoothing, remote switching, and evil row remapping. Distribution smoothing balances the workload among neighbors. In matrices following the power-law distribution, non-zero elements are usually clustered, and, in some cases, appear in just a few rows/columns (Figure 2). Given only distribution smoothing, it would be slow and difficult for an autotuner to converge and achieve good load balance. We solve this problem with remote switching and evil row remapping. Remote switching shuffles workloads of regions with the most and least clustered non-zero elements, making efficient distribution smoothing possible. If a row is observed to still contain too many elements to be smoothed or balanced by remote switching, it is designated as an evil row. AWB-GCN partitions that row and remaps its non-zero elements to multiple regions (with least clustered elements). Figure 3 shows the resulting per-round improvement in hardware utilization as these methods are applied (Nell GCN).

\(^1\)The calculation of one output matrix column is a round

II. Motivation

In this section we briefly introduce the GCN algorithm and discuss data characteristics of power-law graphs.

A. Graph Convolutional Network Structure

Equation 1 shows the layer-wise forward propagation of a multi-layer spectral GCN [8], [29]:

$$X^{(l+1)} = \sigma(AX^{(l)}W^{(l)}) \quad \text{(1)}$$

A is the graph adjacency matrix with each row delineating the connection of a vertex with all the other vertices in the graph. $X^{(l)}$ is the matrix of input features in layer-l; each column of X represents a feature while each row denotes a node. W^{l} is the weight matrix of layer-l. $\sigma(.)$ denotes the non-linear activation function, e.g., ReLU [1]. In general A needs to be normalized: $\tilde{A} = D^{-\frac{1}{2}} \times (A + I) \times D^{-\frac{1}{2}}$ where I is the identity matrix, and $D_{ii} = \sum A_{ij}$. The reason is that, without normalization, multiplying the feature vector $X^{(l)}$ by A will change its scale: those nodes with more neighbors tend to have larger values under feature extraction. Note that during both training and inference of GCN, A remains constant. Since \tilde{A} can be computed offline from A, in the remainder of this paper we use A to denote the normalized \tilde{A}. In general A is multiplied only once per layer. However, when multi-hop neighbor information is to be collected, A can be multiplied twice or more (i.e., A^2, A^3, etc.) per layer.

Equation 1 is derived from graph signal processing theory: convolutions on a graph can be converted to a multiplication of...
signal $x \in \mathbb{R}^N$ (i.e., a scalar for each node) and a filter $g \in \mathbb{R}^N$ in the frequency domain via the Fourier transform:

$$
CONV(g, x) = \mathcal{F}^{-1}(\mathcal{F}(x) \odot \mathcal{F}(w)) = U(U^T x \odot U^T g)
$$

(2)

where \odot denotes the Hadamard product. U is a collection of eigenvectors for the normalized graph Laplacian $\mathcal{L} = I_N - D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = U\Lambda U^T$. The diagonal matrix Λ comprises the eigenvalues.

If a frequency domain filter $g_w = \text{diag}(W)$ is defined, then Equation 2 can be simplified [27] as:

$$
CONV(g_w, x) = U g_w U^T x
$$

(3)

Equation 3 can be further simplified by defining the filter as the Chebyshev polynomials of the diagonal matrix Λ [28], [29] to obtain Equation 1.

Figure 4 illustrates the structure of a Graph Convolutional layer (GCONV). Each GCONV layer encapsulates the hidden features of nodes by aggregating information from neighbors of nodes. By multiplying A and X^l, information from 1-hop connected neighboring nodes are aggregated. By multiplying AX^l with W^l, and going through the non-linear activation function $\sigma(\cdot)$, we obtain the output of this layer, which is also the feature matrix for the next layer X^{l+1}. The matrix A will normally be the same in different layers. After multiple layers, the GCN is able to extract very high-level abstracted features for various learning purposes.

B. Characteristics of Power-Law Graphs

Real-world graphs in many critical domains typically follow the power-law distribution [14]–[17], which states that the number of nodes y of a given degree x is proportional to $x^{-\beta}$ for a constant $\beta > 0$. This implies that in the adjacency matrix A, a small number of rows (or columns) include the majority of non-zeros whereas the majority of the rows (or columns) contain only a few non-zeros but are not empty.

Figure 5 shows the distribution of the GCN datasets used in this paper. Note that adjacency matrix A is always very sparse ($\geq 99\%$). Matrix X is also usually sparse. For the first layer, the sparsity ($X1$) is usually larger than 90\%. As the weight matrix W is dense, the output of AXW is also dense. However, because of the ReLU activation function, the final output $X2$ (also the input of the next layer) becomes sparse but with sparsity usually less than 50\%. The sizes of the matrices in GCNs depend on the dataset and can range from thousands to millions or more. A can be extremely large and is stored in a sparse format.

Table I

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CORA</th>
<th>CITESEER</th>
<th>PUBMED</th>
<th>NELL</th>
<th>NEED</th>
<th>REDDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.18%</td>
<td>0.11%</td>
<td>0.02%</td>
<td>0.005%</td>
<td>0.21%</td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>1.2%</td>
<td>0.85%</td>
<td>0.1%</td>
<td>0.031%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>78.0%</td>
<td>81.9%</td>
<td>71.8%</td>
<td>80.4%</td>
<td>63.9%</td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>2308</td>
<td>3327</td>
<td>19917</td>
<td>55735</td>
<td>223565</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>1433</td>
<td>3703</td>
<td>500</td>
<td>61278</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Layer</th>
<th>CORA</th>
<th>CITESEER</th>
<th>PUBMED</th>
<th>NELL</th>
<th>REDDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>62.8M</td>
<td>198.0M</td>
<td>165.5M</td>
<td>258G</td>
<td>83.3G</td>
</tr>
<tr>
<td>Operatio</td>
<td>1.33M</td>
<td>2.5M</td>
<td>18.0M</td>
<td>78.2M</td>
<td>21.4M</td>
</tr>
</tbody>
</table>

III. GCN Baseline Architecture

This section introduces the multi-core baseline architecture for GCN acceleration. This baseline supports efficient processing of power-law graphs with ultra-high sparsity and large sizes. This design alone cannot address the workload imbalance issue of power-law graphs, but builds a foundation for its further augmentation, described in the next section, which achieves near-optimal workload balancing.

A. Matrix Computation Order

To compute AXW at each GCONV layer, there are two alternative computation orders: $(A \times X) \times W$ and $A \times (X \times W)$. The choice is significant as it dictates the volume of non-zero multiplications. Based on profiling, A is ultra sparse and large, X is generally sparse and usually has a large number of columns, and W is small and dense. For $(A \times X) \times W$, since multiplying A and X requires complex sparse-sparse-matrix-multiplication and produces a very large dense matrix, multiplying their product by another dense matrix W leads to significant computation workload and long delay. Alternatively, for $A \times (X \times W)$, both are sparse-dense matrix multiplications (SpMM) and the scale of computation is drastically smaller. Table II lists the amount of computation for the five datasets following the two approaches. Since the difference is quite obvious, in this design we first perform $X \times W$ and then multiply with A.

B. SpMM Execution Order and Mapping

We perform column-wise-product-based SpMM [41]–[43] as described as follows. Given $S \times B = C$, if S is $(m \times n)$, B is $(n \times k)$, and C is $(m \times k)$, then we can reformulate C as:

$$
C = \sum_{j=0}^{n-1} S_j \cdot b(j, 0) \cdot S_{j+1} \cdot b(j, 1) \cdot \ldots \cdot S_{j+k-1} \cdot b(j, k-1)
$$

(4)

where S_j is the jth column of S and $b(j, k)$ is an element of B at row-j and column-k. In other words, by broadcasting the jth element from column-k of B to the entire column-j of S, we can obtain a partial column of C. Essentially, B is processed in a streaming fashion: each element $b(j, k)$ finishes all computation it involves at once and is then evicted. In this way, we reuse the entire sparse matrix S for each column of C (k times in total). To reduce off-chip memory access for matrix S, we apply inter-layer data forwarding and matrix blocking techniques (discussed in Section 3.4).
This design has additional advantages when S and C are stored in Compressed-Sparse-Column (CSC) format. Furthermore, it provides opportunities to pipeline multiple SpMM operations, as is discussed in Section 3.4. Moreover, column-wise-product brings massive opportunities of workload distribution autotuning which is key to achieving high performance. Figure 6(A) shows the column-wise order for calculating C. The columns of S and elements of B in the same color are multiplied and stored as partial results in C with the same color.

In the baseline design, with the assumption that non-zeros are evenly distributed among the rows, we use a direct and static mapping from matrix rows to PEs to avoid expensive parallel reduction in hardware as illustrated in Figure 6(B).

C. Design of Baseline Architecture

Figure 7 illustrates the baseline design for SpMM calculation with efficient support of skipping zeros. The architecture comprises the modules sparse-matrix-memory (SpMMeM), dense-column-memory (DCM), task-distributor & Queue (TDQ), PE-array, and accumulation-buffers-array (ACC Buffer). SpMMeM buffers the input sparse matrix S (from off-chip) and feeds non-zeros and their indices to TDQ. DCM buffers the input dense matrix B and broadcasts its elements to TDQ. TDQ distributes tasks to the PEs. The PE-array performs concurrent multiplication of non-zero pairs, partial result accumulation, and data exchange with the ACC Buffers. Finally, the ACC Buffers cache the partial results of the resulting matrix C for accumulation and send them to the next SpMM engine at the completion of a whole column calculation. Depending on the sparsity and storage format of S, i.e., CSC, we have two alternative designs for TDQ:

TDQ-1 (Figure 7-left) is used when S is generally sparse (sparsity < 75%) and stored in dense format. We perform the direct row partition as discussed and map non-zeros to the input buffer of the corresponding PEs (Figure 6(B)). In each cycle, $NPE/(1 - \text{Sparsity})$ elements are forwarded to the PE array. Only non-zeros are kept in the queues. Here NPE denotes the number of parallel PEs. Given evenly distributed non-zeros, each PE receives one non-zero per cycle to calculate. In practice, however, the distribution can be very imbalanced and each PE has the chance to receive at most $1/(1 - \text{Sparsity})$ in one cycle. Therefore, each PE is equipped with multiple Task Queues (TQs) guaranteeing enough concurrency to cache all valid data. As shown in Figure 7-(left), in each cycle a PE can receive up to 4 non-zero elements (sparsity < 75%). Each PE has four task queues to buffer them.

In each cycle, Read-after-Write (RaW) checker checks RaW hazards for the elements in the TQs; the arbiter selects a non-empty queue, pops an element without hazard, and forwards it to the PE for processing. Since the computations are all floating-point, the latency of pipelined MAC unit is relatively longer, making Read-after-Write(RaW) hazard a problem. To address this problem, each PE is equipped with a RaW-check-unit and a stall buffer. If RAW hazard occurs, the new job is cached in the stall buffer until the hazard is resolved.

TDQ-2 (Figure 7-right) is used when S is ultra-sparse and stored in CSC format. Since in CSC the non-zeros are contiguous in a dense array, if we can directly process the dense array, we gain from avoiding all the zeros. However, we suffer from the overhead of navigating to the correct PE as the indices of neighboring elements are highly scattered. We use a multi-stage Omega-network for routing the non-zeros to the correct PE according to their row indices. Each router in the Omega-network has a local buffer in case the buffer of the next stage is saturated. This design attempts to balance the data forwarding rate and the processing capability of the PEs by sending NPE non-zeros per cycle. This is achieved when non-zero elements are distributed evenly among rows. Compared with a global crossbar network, the Omega-network design scales better and incurs lower hardware complexity.

When a PE receives a new non-zero pair $[d1,d2]$ from TDQ, it (1) performs the new multiplication task with $d1,d2$, (2) fetches the corresponding partial results $[d_{acc}]$ of output matrix C from the ACC buffers or the accumulation registers attached to MAC units according to the newly received row index, (3) accumulates the multiplication result and d_{acc}, and (4) updates the ACC buffers with the new accumulation result. Each PE is coupled with an ACC buffer to store the rows of C it accounts for. A PE has two units: an Address-Generation-Unit (AGU) for result address generation and forwarding, and a MAC attached with multiple accumulation registers. Note that this extra layer of storage can not only relieve the RaW hazard but also reduce the communication demand between PEs and ACC Buffers. More details are omitted due to space limitations.
limitations. Since \(C \) is a dense matrix and stored in dense format, the rows of \(C \) are statically partitioned among ACC buffers. Synchronization is only needed when an entire column of the resulting matrix \(C \) is completely calculated.

Overall, for each layer of GCN, we first execute SpMM on \(X \times W \). Since \(X \) is generally sparse (except the first layer) and stored in dense format, we use TDQ-1. The result of \(XW \) is dense. We then compute \(A \times (XW) \) which again is SpMM. However, as \(A \) is ultra-sparse and stored in CSC format, we use TDQ-2. The result is dense, but after ReLU, a large fraction of the entries become zero, and we again have a sparse matrix as the input feature matrix for the next layer.

D. Pipelining SpMM Chains

Intra-Layer SpMM Pipelining: One can exploit the parallelism between consecutive SpMMs (i.e., \(X \times W \) and \(A \times (XW) \)) in a layer through fine-grained pipelining. This is based on the observation that \(A \) is constant for the inference of a certain graph. Once a column of \((XW) \) is calculated, we can start the multiplication of this column with \(A \) immediately without waiting for the entire \(XW \) (see Figure 8). This design has two major benefits: (i) we gain extra parallelism and reduce the overall latency through this fine-grained pipelining, and (ii) instead of requiring off-chip storage to cache the big resulting \(XW \) matrix, we only need to buffer a single column of \(XW \); this can be done on-chip. This method can be reused within a GCONV layer if \((AXW) \) is left-multiplied by any other sparse matrices. For example, some GCNs collect information from 2-hop neighbors so the layer formulation becomes \(A \times (A \times (X \times W)) \) and the three multiplications can be pipelined and processed in parallel.

Inter-Layer SpMM Pipelining: SpMMs from different layers can also be pipelined. To avoid pipeline bubbles and large intermediate buffers, we allocate hardware resources (PEs) in proportion to the workload of each layer (Figure 8). In this way, the output generation of the previous layer matches the data consumption of the current layer, so that the execution time of different layers is similar, given optimal workload balance and PE utilization. Pipelining SpMMs from different layers has two benefits. First, it exploits inter-layer parallelism. Second, since \(A \) is shared for all GCONV layers in the inference of a particular graph, it can be reused by SpMM engines across the layers, so off-chip accesses of \(A \) are only required by the first layer. This is done by forwarding elements of \(A \) through the layers.

Bandwidth Analysis: Off-chip data access of the big Adjacency matrix \(A \) can be a concern. However, as AWB-GCN always requests and consumes data with continuous addresses, the off-chip memory bandwidth and the burst mode access can be efficiently utilized. Also, we use three extra methods to reduce the off-chip bandwidth requirement: (1) as mentioned above, \(A \) is reused across layers; (2) matrix blocking is used to improve the data locality and reuse of matrix \(A \). Figure 9 illustrates how the proposed matrix blocking works without affecting the efficiency of the rebalancing techniques which are discussed in the next section. The numbers in the figure are execution orders. \(A \) is partitioned into multiple blocks. Instead of calculating each column of \(A(XW) \) by multiplying all blocks of \(A \) and the corresponding column of \((XW) \), we calculate \(t \) columns of \(A(XW) \) in parallel. The calculation of a certain block of \(A \) will not start until the previous block is reused \(t \) times and finishes calculating its intermediate results of all \(t \) columns of the resulting matrix. By doing so, the data reuse of matrix \(A \) is improved by \(t \) times. Note that this optimization will not hurt the efficiency of the autotuning rebalancing of AWB-GCN, as the sub-SpMM of each block of \(A \) is still following column-wise product order. (3) AWB-GCN is equipped with a scratchpad memory to cache parts of \(A \) on-chip as much as possible. For example, the \(A \) and \(X1 \) of Cora can be entirely stored on-chip.

Based on our experiments, with the proposed optimizations, the AWB-GCN accelerator requires at most 503 Gbps off-chip bandwidth to keep the hardware busy with 1024 PEs for the 5 datasets evaluated. This bandwidth demand can be generally satisfied by current platforms (e.g., Intel D5005 FPGA board provides 614 Gbps DDR bandwidth; VCU-128 FPGA provides 3680 Gbps HBM bandwidth; NVIDIA V100 provides 7176 Gbps HBM bandwidth).
E. The Workload Balance Problem

The baseline architecture works well when non-zeros are evenly distributed among the rows of \(A \). However, when this assumption does not hold, the performance of the baseline architecture can degrade considerably due to workload imbalance among PEs. Figures 10 illustrates the utilization of 256 PEs processing SpMMs with Adjacency matrices of the Citeseer and NELL datasets. As mentioned in Section 1, evil rows and regionally clustered non-zeros in power-law graph matrices bring the inefficiency. The existence of evil rows keeps only a few PEs busy while all others idle most of the time, resulting in significant major crests in the utilization waves; the regionally clustered non-zero elements result in the minor crests; the differences in the numbers of non-zeros in neighboring rows result in other fluctuations.

A common software approach for dealing with sparse data structures is to profile the structure, e.g., with symbolic analysis, and then use that information to guide the “real” processing. For GCNs, however, it has been demonstrated that the preprocessing stage can take 10\(\times \) more time than the inference itself [31]. In this work, we dynamically adjust hardware configurations for workload rebalancing. This design can be applied to a variety of specialized accelerators for processing sparse data structures.

IV. AWB-GCN ARCHITECTURE

In this section, we describe the AWB-GCN architecture. The core is the handling of load balancing at three levels of granularity: distribution smoothing for local utilization fluctuations among PEs, remote switching for the minor crests, and row remapping for the major crests.

Figure 11 illustrates autotuning with 24 PEs performing SpMM on a power-law matrix. The gray bars at the top show the execution time of parallel PEs; the length changes dynamically through the process. The narrower bars at the bottom show the static density-per-row of the matrix. Ideally, at the end of autotuning, all bars on the top becomes short and have the same length. Each round of autotuning includes two phases: First, data processing and distribution smoothing in phase 1; then remote switching and row remapping.

Figure 11 (a)&(b) illustrate the first round of autotuning. The progression from Figure (a) to (b) shows the first phase. Figure (a) gives estimated execution time without distribution smoothing; Figure (b) shows the actual execution time with distribution smoothing applied. During phase 1, PEs keep offloading workloads to their less busier neighbors, resulting in a more flat and smooth execution time wave (shown in (b)). Meanwhile, the execution time of PEs at the wave crests and troughs is recorded by the Autotuner.

After all the PEs have finished, phase 2 starts. The Autotuner partitions and remaps evil rows to PEs at troughs and switches workloads of the PEs at the minor crests with the ones at the troughs. The green and blue arrows in (b) show evil row remapping and remote switching decisions, respectively. After these decisions are made, the second round of autotuning starts (Figures (c)&(d)). With remote switching and row remapping determined in the first round, the initial workload distribution among PEs at the start of the second round (shown in (c)) can be more efficiently balanced by distribution smoothing (shown in (d)). The blue arrows in (d) show that remote balancing not only finds new pairs of PEs to switch workloads, but also adjusts the switch fractions determined in the previous round. After several rounds, the system converges to optimal balanced status; this is then used for the remainder of the computation.

All profiling and adjustment are performed at runtime. We now present design details.
A. Distribution Smoothing

At the start of processing, rows are evenly distributed among PEs as introduced in Section 3.2 (as shown in Figure 6(B)). During the calculation of each round, we employ distribution smoothing by averaging out the workloads among neighbors. The architecture is able to monitor the runtime PE utilization information by tracking the number of pending tasks in TQs and keep offloading the work of PEs with more pending tasks to their less busy neighbors. However, the offloaded work needs to be sent back to the ACC buffers of its original PE after processing. Due to chip area and design complexity restrictions, we may offload workloads among direct neighbors, 2-hop neighbors, or even 3-hop neighbors, but not farther ones.

Figure 12 illustrates the hardware design of 1-hop distribution smoothing for TDQ-1 and TDQ-2.

TDQ-1: Before a new task is pushed into the TQ of a PE, the PE compares the number of pending tasks with those in the neighboring TQs. The task is then forwarded to the TQ with the fewest pending tasks. If forwarded to a neighbor, the result needs to be returned to the ACC buffers of its original PE after accumulation (see Figure 12-(B)). Note that in order to match the computation rates and the data access concurrency, the rows assigned to each PE are distributively mapped and stored in the ACC buffers of this PE and its neighbors in an interleaved manner. The calculation of valid return address and accumulation of partial results are done in the neighbor PE.

TDQ-2: The final layer of the multi-stage Omega network handles neighbor task forwarding. As shown in Figure 12-(C) (also in Figure 13), multiple PEs share the same final-layer switch; we refer to these PEs as a group. AWB-GCN keeps tracking the usage of TQs of the final layer. Once a new task is forwarded to the final-layer switch, the TQ usages among neighbors are compared and then the task is routed to the PE with the lowest TQ usage. To enable PEs on the group edge (i.e., the leftmost or rightmost PEs per group) to communicate with their out-of-group neighbors, we augment the Omega-network by adding 2 extra links per switch in the final layer, as shown in Figure 12-(D). Note that Figure 12-(D) shows sharing only among 1-hop neighbors. By considering more distant hop neighbors, a more balanced design is obtained at the cost of higher hardware complexity and area. This is discussed in the evaluation section.

Distribution smoothing helps remove local utilization fluctuations (Figures 11(a) to (b)), but is not sufficient when (1) non-zeros are clustered in a region across many PEs, so that neighbors are mostly busy and have no chance to help each other, resulting in a minor utilization crests (PE20,21,22 in Figure 11(b)); or (2) most non-zeros are clustered in only a few rows so that the major crests cannot be eliminated even if all neighboring PEs help (PE9 in Figure 11(b)).

B. Remote Switching

To address regional clustering, we propose remote switching. This process partially or completely exchanges the workloads between under- and overloaded PEs, i.e., at centers of utilization wave troughs and crests, respectively. The switch fraction is determined at runtime by an autotuner and is based on per-round PE utilization. As the sparse matrix A is reused during the processing per round, the switch strategy generated in prior rounds is valuable in the processing of later rounds. The accelerator remembers the switch strategies used in the current round and incrementally optimizes them based on the utilization information obtained in the next round. In this way, remote switching is able to flatten the crests and troughs; after several rounds of autotuning, the switch strategy best matching the sparse structure of A is obtained, and is used for the remaining rounds for almost perfect PE utilization.

The hardware design is shown in Figure 13. The over-loaded and under-loaded PEs are identified by using the PE Status Monitor (PESM) of Autotuner during Phase one of autotuning. Recall that each TQ has a counter to track the number of pending tasks; these can trigger an empty signal when reaching zero. These empty signals are connected to the PESM. At each cycle, the updated empty signals are xored with their values recorded on the previous cycle. The XOR results indicate which PEs are newly finished; this information is stored in the Switch Candidate Buffer.

At the start of each round (after A is totally sent to TDQs), the arbiter scans the buffer and record IDs of newly done PEs until enough under-loaded PEs have been found. The number of PE tuples for switching at each round can be customized. In Figure 13, four tuples of the most over- and under-loaded PEs are selected for remote switching. After the arbiter finds the first 4 idle PEs, it stops scanning the buffer and instead waits for the completion signal ($\text{bit} – \text{AND} \text{ all empty signals}$) from the system, which implies all PEs have become idle. Meanwhile, the Switch Candidate Buffer caches the newly idle info of the most recent cycles. Whenever the arbiter receives the completion signal it starts to scan the buffer and continues until the four most over-loaded PEs have been found. Note that the arbiter does not select neighbor PEs continuously; this
guarantees that PE tuples selected by PESM are at different crests and troughs of the utilization wave.

To avoid thrashing, we only exchange a portion of the workload between PEs. We use the following equation to calculate the number of jobs (i.e., rows of A) to be switched in the i-th round (i.e., a column of B), $N_{i, \text{init}}$:

$$ N_{i, \text{init}} = G_i / G_1 \times (R/2) $$

(5)

where G_i is the workload gap of the selected PE tuple at the i-th round, and R is the number of rows per PE under equal mapping. Here, workload gap is approximated as the difference of execution cycles to finish all tasks.

In the $i + 1$-th round, new PE-tuples are selected and their switch fractions are calculated. Meanwhile, the autotuner also tracks the post-switching utilization gaps of PE-tuples selected in the prior rounds and uses them as feedback to adjust the switch fraction $N_{i, \text{init}}$; this minimizes the utilization gaps further. The workload switching fraction for each tracked PE-tuple is adjusted for two or more rounds and is highly likely to converge to the optimal distribution. Equation 5 can now be rewritten as follows:

$$ N_{i,j} = \begin{cases}
G_i / G_1 \times (R/2) & \text{if } j = 0 \\
N_{i-1,j-1} + G_i / G_1 \times (R/2) & \text{if } j > 0
\end{cases} $$

(6)

where j denotes the number of rounds of fraction update. $N_{i,j}$ indicates that the current PE-tuple is in its j-th update and its initial fraction to switch was calculated in the $i - j$-th round. The number of rounds tracked simultaneously can be customized and depends on the size of the tracking window in the PESM; this is an area/performance tradeoff. In Figure 13, two consecutive rounds are tracked.

Calculation of Equation 6 is done in the Utilization Gap Tracker (UGT in Figure 13). To reduce the hardware cost of calculating $G_i / G_1 \times (R/2)$, we use a hardware-friendly approximation with threshold-based counting and table lookup; when the most under-loaded PE is found, the left CNTs in UGT start counting. The execution cycle gap (G_1) at the first round is right-shifted by g bits (the granularity for division approximation). The result is used as a threshold. Whenever the left CNTs reach the threshold, they get back to 0 and the right CNT adds 1. When the most over-loaded PE is found, the counting stops. Assuming the right CNT counts to q, we know the execution time gap at the current round is approximately $q \times G_1 / (2^g)$.

Using g as the address to access the Table for Switch Fraction Lookup (TfSFL), we know the approximate number of rows that needs to be switched. Once the number of rows to be switched is known, it is forwarded to the Workload Distribution Controller (WDC) together with the corresponding PE IDs. At the start of the next round, the destination PE of these rows is updated in the Shuffle Switches (SS). By doing so, the non-zeros in these rows will be forwarded to the post-switching PEs in the coming rounds.

Furthermore, in order to reduce the workloads of overloaded PEs more efficiently, all operations related to the main-diagonal elements at the rows assigned to these PEs are skipped during processing. Instead of performing these operations, when the required elements of the dense matrix reach TDQs, they will be directly forwarded to the ACC Buffers of the post-switching PEs and be accumulated just before the final accumulation results are sent to the next kernel.

Remote switching followed by distribution smoothing is efficient on getting rids of most of crests of utilization waves. However, for the major crests resulted from evil rows which have too many non-zeros to be shared only by neighbors, extra effort is required.

C. Evil Row Remapping

We address evil-row clustering by building row remapping support into the remote switching hardware. With row remapping, the evil row is distributed to the most under-loaded PEs in troughs; in this way the neighbors of these PEs can help. Row remapping is triggered based on demand at the end of each round. The autotuner calculates the utilization gaps between the most over- and under-loaded PEs and determines whether their gaps are too big for remote switching to handle. If yes, row remapping is performed. The workloads of the PE overloaded in the current round are switched (temporarily) with a Super-PE in the next round. During processing of the next round, the Super-PE counts the numbers of non-zeros per row and finds the evil rows containing the most non-zeros. In the round after,
the workloads of each evil row are partitioned and distributed to a set of Labor-PEs controlled by the Super-PE.

After evil rows are remapped to labor-PEs, the original workloads of the labor-PEs can still be swapped with the most under-loaded PEs via remote switching; this ensures that even if the labor-PEs are overloaded originally, they do not become new crests after row remapping. If a labor-PE is found to have an evil row, evil row remapping will first map its workload to the master-PE, and then distributively remap the evil row back to labor-PEs, including the one which has the evil row originally. By remapping evil rows statically to certain PE instead of dynamically to random ones, the aggregation of partial results becomes hardware efficient. If row remapping is not triggered, Super- and Labor-PEs serve as regular PEs.

The existence of evil rows is generally the most critical bottleneck, especially when utilization is lower than 50%. The proposed row remapping technique makes it possible for the autotuner to find the optimal workload distributions and achieve high utilization. As evil row remapping is normally triggered during the first few rounds, the utilization of the system increases rapidly right at the start and the autotuner generally converges quickly.

Figure 13 illustrates the hardware support of row remapping. For clarity, only one Super-PE and its four Labor-PEs are shown. The Labor-PE has an architecture similar to the normal PE, but they are equipped with an extra register array to store the accumulation results of evil rows and are connected to an adder tree for result aggregation. The aggregated results of evil rows are cached in a small separate ACC buffer. The super-PE is much bigger than other PEs, as it serves as a profiler to find the evil rows. It is equipped with two extra modules: a parallel sorting circuit that tracks the rows with the most non-zeros; and a non-zero counter (including a local buffer) that records the number of non-zeros per row. Workload remapping between Super-PE & Labor-PEs and workload switching between Super-PE & the PE-with-evil-rows are handled by augmenting the Autotuner as follows. First, the UGT module is equipped with a comparator to identify whether evil row remapping is required; if it does, then the UGT will send the information to WDC. The WDC knows the IDs of the Super-PE and Labor-PEs. If row remapping is triggered or an evil row is found, the entries of the Super- and Labor-PE at Distribution Switch Table in the WDC are updated. This enables workload switching and remapping in the coming round.

V. Evaluation

In this section, we evaluate AWB-GCNs with different design choices and compare them with other platforms processing the same networks.

A. Evaluation Configuration

We implement AWB-GCNs in Verilog HDL and measure PE utilization, performance, energy efficiency, and hardware resource consumption on Intel acceleration card D5005 which is equipped with a Stratix 10 SX FPGA. Note that the FPGA is only used as an evaluation platform to demonstrate the performance of AWB-GCN. The design is a general architecture that does not leverage any FPGA-specific features.

To measure utilization, we add a counter to each PE to track the number of idle cycles. The number of operating cycles (latency) is measured by running GCN inference continuously for 1000× and calculating the average results. The hardware consumption and operating frequency are reported by Quartus Pro 19.4 after synthesis and implementation. To perform fair cross-platform comparisons, we implement GCNs with PyG
ABSTRACT

AWB-GCN is an adaptive logic-密集型 accelerator for graph neural networks (GNNs). It includes a task-aware PE scheduler, which can rebalance the workload among PEs to maintain high utilization. AWB-GCN is designed in Intel FPGAs, and can adapt to the workload distribution in GNNs. AWB-GCN achieves 27.59×, 18.32×, 36.53×, 23.79×, and 21.08× speedups compared to the baseline designs for Cora, Citeseer, Pubmed, Nell, and Reddit, respectively.

1. INTRODUCTION

GNNs are widely used in many applications such as social networks, biological networks, and recommendation systems. The computation of GNNs involves a great number of GCNs, which can be accelerated by specialized hardware. However, the distribution of GCNs in the workload can fluctuate significantly due to workload imbalance. This motivates us to design an adaptive hardware accelerator for GNNs.

2. RELATED WORK

There have been many studies on GCNs, such as GraphSAGE [1], GraphAttention [2], and GAT [3]. However, these methods mainly focus on improving the performance of single GCNs, and do not consider the workload distribution in the workload.

On-chip Storage Demand (MB)
smoothing are on average 3.3% and 7.0%, respectively; the overhead of remote switching and row remapping is, on average 1.5%.

Figure 16(B) compares on-chip storage demand. That of Task Queues in the Omega-Network is in blue; the buffers for remote switching + row remapping are in red; the others are in green. As shown in Figure (B), the overall storage demands of AWB-GCN with Design(D) are even lower than the baseline. This is largely due to dramatically reduced per-PE Task Queue size under more balanced workloads. With much more balanced workload distributions in Design(D), the congestion and backpressure in Omega-Network are significantly relieved, making the TQs narrower and shallower.

Finally, Figure 17 shows the utilization improvement due to iterative workload autotuning. Rebalancing can be accomplished within 10 iterations. This means that most of the iterations can benefit from operating under the converged optimal strategy. Note that the utilization of Nell has a sharp improvement in round 3 due to effective evil row remapping.

C. Scalability of AWB-GCN

We evaluate the scalability of AWB-GCN by running GCN inference of the five datasets on the baseline as well as Designs (B) and (D) of AWB-GCN and varying the number of PEs from 512, 1024, 2048 to 4096. In Figure 18, the bars represent the performance speedup comparing with the baseline design with 512 PEs. The lines represent average PE utilizations.

As shown in Figure 18, the PE utilization of the baseline design drops dramatically with increasing number of PEs. This is because more PEs means fewer rows per PE, highlighting the imbalance among PEs: they have fewer opportunities to absorb inter-row imbalance. Due to the dropping PE utilization, the performance speedup shows poor scalability. For AWB-GCN with only distribution smoothing, PE utilization also drops but more slowly than baseline. Nell is an outlier as the utilization of baseline with 512 PEs is too low to drop. In contrast, the PE utilization of the complete version of AWB-GCN, Design(D), is high and stable. The performance scales almost linearly with increasing number of PEs.

D. Cross-platform Comparison

We evaluate five scenarios: (i) AWB-GCN Design-(D) with 4096 PEs, (ii) PyG-based implementation on Intel Xeon E5-2680v3 CPU (PyG-CPU), (iii) PyG-based implementation on a NVIDIA RTX 8000 GPU (PyG-GPU), (iv) 4096-PE baseline AWB-GCN without workload rebalancing, and (v) SCNN [45] reproduction with 4096 multipliers (we build a system-C-based cycle-accurate simulator for SCNN). We use the five datasets: Cora, Citeseer, Pubmed, Nell, and Reddit for the evaluation. The GCN model configuration follows the original GCN algorithm papers [29], [46], [47]. Note that we use half-precision floating point for Reddit. We label these GCNs “Standard networks”.

As shown in Table III, despite running at a relatively low frequency, AWB-GCN achieves, on average, speedups of $2622 \times$ and $136 \times$ over the well-optimized PyG implementations on high-end CPUs and GPUs. It achieves a speedup of $6.1 \times$ over the baseline design without workload rebalancing. For the Nell dataset, the speedup over the baseline is $18.8 \times$, demonstrating in particular the impact of workload balancing. Reddit fails on GPU due to out-of-memory. AWB-GCN achieves from $2.3 \times$ to $19.7 \times$ speedup compared with SCNN. SCNN is inefficient when working with GCNs because it uses Cartesian Product-based SpMM which requires massive and highly irregular reduction of intermediate results, especially when the matrices are very big, sparse, and follow power-law. SCNN also requires very high off-chip bandwidth for the reduction. In our evaluation, we assume SCNN is equipped with a High Bandwidth Memory (HBM) which provides sufficient off-chip bandwidth. If DRAMs are used, the performance of SCNN would be even lower.

The tremendous speedups over PyG-CPU and PyG-GPU originate from AWB-GCN’s dedicated architecture which uses features not available on general-purpose CPUs and GPUs: (a) the dynamic autotuning techniques ensure balanced workload
and high PE utilization (Section 4); (b) all the SpMM kernels of the GCN layers are deeply pipelined, leading to reduced on-chip storage demand (Figure 8); (c) inter-layer data forwarding and matrix blocking (with column-wise-product sub-SpMM execution Figure 9) improve data reuse and guarantee that off-chip memory accesses are to consecutive addresses.

We also compare AWB-GCN with existing GCN accelerators. Prior to this work, to the best of our knowledge, the design proposed by Yan et al., HyGCN [31], is the only reported accelerator of GCN inference. However, HyGCN customizes the hidden layer of all GCN models to 128 channels, which is distinct from the original settings [29], [46], [47]. We refer to the HyGCN-customized models as HyGCN_networks. Also, the HyGCN report does not give absolute performance but, rather, relative speedups over a E5-2680v3 CPU. To compare AWB-GCN with HyGCN, we realize the HyGCN_networks on the same E5-2680v3 CPU, adopting the same software framework (PyG [44] – HyGCN also uses PyG for the testing on CPU). The PyG-CPU result is thus a common baseline for comparing the relative speedups. Table IV shows the results.

With the HyGCN_networks, AWB-GCN achieves on average $3888 \times 25.3 \times$, and $5.1 \times$ speedups over PyG-CPU, PyG-GPU, and the HyGCN design, respectively. The performance improvement is attributable, in part, to the features of AWB-GCN as discussed, and one additional reason: HyGCN scheduling is coarse-grained block-wise, while that of AWB-GCN is fine-grained element-wise. This avoids redundant data access and results in more benefit from a balanced workload.

As this design is implemented on an FPGA, it is difficult to compare energy efficiency to HyGCN, which is implemented as an ASIC. Comparing to ASIC, the reconfigurable routing switches on FPGA chip consume extra energy, making the energy efficiency of FPGA design lower (approximately $14 \times$ according to the numbers reported by Kuon [48]). To compare the performance fairly, we limit the number of multipliers used and make it comparable to HyGCN. In particular, we use 4k 32-bit fixed-point multipliers. Floating-point multipliers also consume more energy than fixed-point ones.

VI. RELATED WORK

GNN studies use neural network algorithms to address problems in graph processing. The first GNN model was proposed by Gori et al. [18]. In the past decade, work has continued on optimizing GNN algorithms exploring new neural network approaches [8], [19], [20], [22]–[25]. More recently, inspired by CNNs that achieve great success with euclidean data, GCNs are proposed for hidden feature extraction of non-euclidean data. In 2013, Bruna et al. [27] proposed the first GCNs for spectral graph theory; this was developed further in a number of variants [26], [28], [29]. GCNs are at the center of the research on neural-network-based graph processing [30].

There have been many efforts on accelerating sparse CNNs [38]–[40], [45], [49]–[52]. We summarize them and explain why they fall short when applied to GCNs. Kung et al. condense the sparse parameter matrix through column grouping [50]. In case of conflict, only the most significant parameters are kept, others are discarded. Essentially, some accuracy is sacrificed for performance. Kim et al. [40] address the workload imbalance problem of sparse CNNs, but use information from design-time profiling and pre-scanning. Han et al. [38] propose EIE, an SpMV accelerator that addresses imbalance with row-direction queuing. The design is not feasible in GCNs due to their large data size and power-law distribution. In EIE, weight matrices of SCNNs are distributively pre-stored on-chip in local buffers of PEIs. This avoids off-chip non-zero accesses and online workload distribution, but is not possible for GCNs. Also, single-direction queuing fails to balance the workload of power-law matrices, which have serious imbalance on both directions. Zhang et al. [39] propose Cambiricon-S with efficient index matching to identify and multiplex non-zeros and feed them to massively parallel PEs. Again, these proposed architectures are not feasible for processing GCNs due to the ultra-low sparsity of power-law graphs which leads to highly scattered indices of neighboring elements. Given the adjacency matrix

TABLE III

<table>
<thead>
<tr>
<th>Platform</th>
<th>Standard_networks</th>
<th>Cora</th>
<th>CiteSeer</th>
<th>Pubmed</th>
<th>Nell</th>
<th>Reddit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon E5-2680 (PyG)</td>
<td>Latency (ms)</td>
<td>2.51</td>
<td>3.66</td>
<td>15.39</td>
<td>2.28</td>
<td>2.54</td>
</tr>
<tr>
<td>Freq 2.5GHz</td>
<td>Energy efficiency</td>
<td>6.68E3</td>
<td>3.88E3</td>
<td>1.93E3</td>
<td>6.99</td>
<td>5.4E-2</td>
</tr>
<tr>
<td>NVIDIA RTX8000 (PyG)</td>
<td>Latency (ms)</td>
<td>0.59</td>
<td>0.68</td>
<td>0.59</td>
<td>0.69</td>
<td>90.50</td>
</tr>
<tr>
<td>Freq 1.95MHz</td>
<td>Energy efficiency</td>
<td>1.06E4</td>
<td>1.29E4</td>
<td>1.11E4</td>
<td>89.36</td>
<td>6.4E-2</td>
</tr>
<tr>
<td>SCNN (Cartesian product, 330MHz)</td>
<td>Latency (ms)</td>
<td>1.68E2</td>
<td>1.08E2</td>
<td>7.28E2</td>
<td>31.47</td>
<td>73.22</td>
</tr>
<tr>
<td>Baseline Intel D5050 FPGA</td>
<td>Latency (ms)</td>
<td>1.3E-2</td>
<td>9.0E-3</td>
<td>0.6E-2</td>
<td>0.69</td>
<td>47.4E2</td>
</tr>
<tr>
<td>Freq 330MHz</td>
<td>Energy efficiency</td>
<td>6.86E5</td>
<td>9.75E5</td>
<td>1.22E5</td>
<td>3.22E5</td>
<td>1.83E2</td>
</tr>
<tr>
<td>AWB-GCN Intel D5050 FPGA</td>
<td>Latency (ms)</td>
<td>2.3E-3</td>
<td>4.0E-3</td>
<td>3.8E-3</td>
<td>1.6</td>
<td>3.18E3</td>
</tr>
<tr>
<td>Freq 330MHz</td>
<td>Energy efficiency</td>
<td>3.08E6</td>
<td>1.95E6</td>
<td>2.48E6</td>
<td>4.12E6</td>
<td>2.58E6</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>Platform</th>
<th>HyGCN_networks</th>
<th>Cora</th>
<th>CiteSeer</th>
<th>Pubmed</th>
<th>Nell</th>
<th>Reddit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon E5-2680 (PyG)</td>
<td>Latency (ms)</td>
<td>13.07</td>
<td>15.73</td>
<td>2.19E2</td>
<td>3.17E3</td>
<td>8.05E5</td>
</tr>
<tr>
<td>Freq 2.5GHz</td>
<td>Energy efficiency</td>
<td>1.23E3</td>
<td>9.35E2</td>
<td>7.0E-1</td>
<td>4.59</td>
<td>0.02</td>
</tr>
<tr>
<td>NVIDIA RTX8000 (PyG)</td>
<td>Latency (ms)</td>
<td>0.69</td>
<td>0.69</td>
<td>1.31</td>
<td>100.18</td>
<td>31.7E5</td>
</tr>
<tr>
<td>Freq 1.95MHz</td>
<td>Energy efficiency</td>
<td>1.16E4</td>
<td>1.09E4</td>
<td>6.46E3</td>
<td>79.81</td>
<td>6.4E-2</td>
</tr>
<tr>
<td>HyGCN TSMC 12 nm</td>
<td>Latency (ms)</td>
<td>2.1E-2</td>
<td>0.30</td>
<td>0.64</td>
<td>NA</td>
<td>2.89E2</td>
</tr>
<tr>
<td>Freq 1GHz</td>
<td>Energy efficiency</td>
<td>7.16E6</td>
<td>4.94E6</td>
<td>3.17E6</td>
<td>NA</td>
<td>3.17E6</td>
</tr>
<tr>
<td>AWB-GCN Intel D5050 FPGA</td>
<td>Latency (ms)</td>
<td>1.7E-2</td>
<td>2.9E-2</td>
<td>0.23</td>
<td>3.25</td>
<td>49.7E</td>
</tr>
<tr>
<td>Freq 330MHz</td>
<td>Energy efficiency</td>
<td>4.39E5</td>
<td>2.71E5</td>
<td>1.71E4</td>
<td>2.28E3</td>
<td>1.45E2</td>
</tr>
</tbody>
</table>
of Nell and a 1024-PE Cambricon-S, multiplexing enough non-zero pairs to feed all PEs per cycle would require 1024\times 13699:1 multiplexers for single-precision floating point; this is not viable given likely chip technology. Besides work on sparse CNNs, researchers also propose architectures for general SpMM. Zhuo and Prasanna [53] present an SPMV design for FPGAs. Pal [54] proposes an outer-product-based SpMM architecture. This work focuses on reducing redundant memory accesses to non-zeros and does not essentially address the ultra-workload-imbalanced issue faced with GCNs. In their results, load-imbalances during the merge phase and the uneven data sharing patterns during the multiply phase lead to degraded speedup for the dataset with highly-unbalanced non-zero element distribution.

SIGMA [55] and ALRESCHA [56] are recent high-performance architectures for SpMM and SpMV. We mainly discuss SIGMA, as SIGMA focuses on SpMM kernels and is equipped with more efficient optimizations for SpMM, while ALRESCHA has higher flexibility to support various kernels through switch reconfiguration. SIGMA uses an element-wise smart global controller to distribute every pair of non-zeros to the proper PEs dynamically through a Benes network. By doing so, PEs work with high utilization and the operations are evenly distributed among all multipliers so that workload imbalance is eliminated. SIGMA is highly efficient for general SpMMs, but needs some augmentation to work with GCNs. First, for a very large and sparse matrix, the type of bitmap compression format introduces significant overhead. Second, similar to Cambricon-S, the multiplexer required to get source/destination pairs would become very large, which limits the performance significantly. Third, for the extremely large and sparse matrices common in GCN usage, the efficiency of the element-wise global controller decreases significantly when performing tasks such as matrix scanning and element filtering/counting which determines the number of Flex-DPEs.

To eliminate workload imbalance without using a global element-wise controller (as used in SIGMA), AWB-GCN uses auto-tuning-based rebalancing hardware, which is essentially also a “controller”, to dynamically distribute tasks. In contrast to the controller used in SIGMA, AWB-GCN’s is more coarse-grained and lighter weight. In particular, the distribution smoothing function is a local element-wise controller which, similarly to SIGMA, distributes non-zero pairs to proper PEs. However, in contrast to SIGMA, in AWB-GCN the destination PEs must be local, meaning that they must within a few hops of the PE assigned in the initial mapping. Also, remote switching+row remapping is effectively a global row-wise controller which can distribute tasks to any PEs without range limit, rather, with granularity of rows/fraction of rows instead of elements. To make the proposed hybrid and lightweight controller handle workload imbalance as well as a global element-wise controller, we use auto-tuning. The proposed auto-tuning-based controller is designed especially for SpMMs with power-law matrices. For general SpMMs, a global element-wise controller can be more efficient.

Another active area of research is graph processing. Song et al. [57] and Zhang et al. [58] propose GraphR and GraphP, which are both based on Processing In Memory (PIM), to accelerate low-precision graph tasks. However, they do not support complex floating-point operations. Ham et al. [59] propose Graphicionado, a vertex-centric acceleration framework for graph analytics applications. It focuses on simple graph analysis applications. Ozdal et al. [60] propose a System-C-based template for graph analytics applications. Ozdal’s work and Graphicionado both use crossbars for data exchange which limits their scalability. None of these can directly support GCNs without significant modifications.

Researchers also conduct software optimizations for SpMM on GPUs and general-purpose multicore CPUs [61]–[65]. These software solutions, however, do not meet the strict timing requirements of GCNs because of significant overhead in preprocessing [31], [61]–[63] which is avoided in AWB-GCN. Also, adjacency matrices evolve at runtime, making offline processing even less useful.

VII. Conclusion

In this paper, we propose AWB-GCN to accelerate GCN inference. To tackle the major performance issues derived from workload imbalance, we propose a hardware-based autotuning framework including three runtime workload rebalancing techniques: distribution smoothing, remote switching, and row remapping. The proposed rebalancing methods rely on hardware flexibility to realize performance autotuning with negligible area and delay overhead. This is the first accelerator design for GCNs that relies on hardware autotuning to achieve workload rebalancing for sparse matrix computations. We evaluate AWB-GCN using an Intel FPGA D5005 Accelerator Card with 5 widely used GCN datasets. Results show that AWB-GCN can achieve, on average, 3255\times, 80.3\times, and 5.1\times speedups over high-end CPUs, GPUs, and other prior work respectively. Although FPGAs are used as a demonstration in this paper, the proposed architecture does not rely on any FPGA-specific features. And although AWB-GCN is designed for GCNs, it is generally efficient for GNNs whose major arithmetic primitives are also SpMMs, e.g., GraphSage [66], GINConv [67], and GTN [30].

ACKNOWLEDGEMENTS

This work was supported, in part, by the NSF through Awards CCF-1618303, CCF-1919130, and CNS-1925504; by the NIH through Award R44GM128533; by grants from Microsoft and Red Hat; and by Xilinx and by Intel through donated FPGAs, tools, and IP. This research was also partially funded by Pacific Northwest National Laboratory’s DMC-CFA project and DeepScience-HPC LDRD project. The evaluation platforms were supported by the U.S. DOE Office of Science, Office of Advanced Scientific Computing Research, under award 66150: “CENATE - Center for Advanced Architecture Evaluation.” The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830.