
Optimized Quantum Compilation
for Near-Term Algorithms with OpenPulse

Pranav Gokhale
University of Chicago

Ali Javadi-Abhari
IBM

Nathan Earnest
IBM

Yunong Shi
University of Chicago

Frederic T. Chong
University of Chicago

Abstract—Quantum computers are traditionally operated by
programmers at the granularity of a gate-based instruction set.
However, the actual device-level control of a quantum com-
puter is performed via analog pulses. We introduce a compiler
that exploits direct control at this microarchitectural level to
achieve significant improvements for quantum programs. Unlike
quantum optimal control, our approach is bootstrapped from
existing gate calibrations and the resulting pulses are simple.
Our techniques are applicable to any quantum computer and
realizable on current devices. We validate our techniques with
millions of experimental shots on IBM quantum computers,
controlled via the OpenPulse control interface. For representative
benchmarks, our pulse control techniques achieve both 1.6x lower
error rates and 2x faster execution time, relative to standard
gate-based compilation. These improvements are critical in the
near-term era of quantum computing, which is bottlenecked by
error rates and qubit lifetimes.

Index Terms—quantum computing, pulse control, OpenPulse

I. INTRODUCTION

The present era of quantum computing is characterized by

the emergence of quantum computers with dozens of qubits,

as well as new algorithms that have innate noise resilience

and modest qubit requirements. There are promising indica-

tions that near-term devices could be used to accelerate or

outright-enable solutions to problems in domains ranging from

molecular chemistry [1] to combinatorial optimization [2] to

adversarial machine learning [3]. To realize these practical

applications on noisy hardware, it is critical to optimize across

the full stack, from algorithm to device.

Standard quantum compilers operate at the level of gates.

However, the lowest-level of quantum control is through ana-

log pulses. Pulse optimization has shown promise in previous

quantum optimal control (QOC) work [4], [5], but we found

that noisy experimental systems are not ready for compila-

tion via QOC approaches. This is because QOC requires an

extremely accurate model of the both the analog pulses that

reach the qubits and the machine itself, i.e. its Hamiltonian.

The analog pulses are subject to several errors, most notably

sampling errors from the waveform generator [6] and phase

offset errors from the temperature difference between classical

electronics and the cold qubits [7], [8]. Moreover, Hamilto-

nians are difficult to measure experimentally and moreover,

they drift significantly between daily recalibrations. The few

experimental QOC papers address these issues with significant

pre-execution calibration overhead such as staggered field

Email: pranav@super.tech

calibration [5]. By contrast, we propose a technique that is

bootstrapped purely from the daily calibrations that are already

performed for the standard set of basis gates. The resulting

pulses form our augmented basis gate set. These pulses

are extremely simple, which reduces control error and also

preserves intuition about underlying operations, unlike QOC.

This technique leads to optimized programs, with mean 1.6x

error reduction and 2x speedup for near-term algorithms.

We emphasize the generality of our approach and our

compiler, which can target any underlying quantum hardware.

We demonstrate our results via OpenPulse [6], [7], an interface

for pulse-level control. In particular, our work is the first

experimental demonstration of OpenPulse for optimized com-

pilation of quantum programs (one prior paper used OpenPulse

for noise extrapolation [9]). We executed pulse schedules

on IBM’s 20-qubit Almaden quantum computer, accessible

through the cloud via the IBM Q Experience [10]. Our

experience-building spanned over 11.4 million experimental

shots, 4 million of which are explicitly presented here as

concrete research outcomes. Our results indicate that pulse-

level control significantly extends the computational capacity

of quantum computers. Our techniques are realizable immedi-

ately on existing OpenPulse-compatible devices. To this end,

all of our code and notebooks are available on Github [11].

We begin with background on quantum computing in Sec-

tion II. Next, Section III presents an overview of standard

quantum compilers and our compiler design (depicted in

Figure 1). Sections IV– VII describe four key optimizations in

our compiler, all of which are enabled by pulse-level control:

1) Direct Rotations (Section IV). Access to pulse-level

control allows us to implement any single-qubit opera-

tion directly with high fidelity, circumventing inefficien-

cies from standard compilation.

2) Cross-Gate Pulse Cancellation (Section V). Although

gates have the illusion of atomicity, the true atomic

units are pulses. Our compiler creates new cancellation

optimizations that are otherwise invisible.

3) Two-Qubit Operation Decompositions (Section VI).

We recompile important near-term algorithm primitives

for two-qubit operations directly down to the two-qubit

interactions that hardware actually implements.

4) Qudit Operations (Section VII). Quantum systems have

infinite energy levels. Pulse control enables d-level qudit
operations, beyond the 2-level qubit subspace.

186

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00027

Fig. 1: Like classical programs, quantum programs undergo

a compilation process from high-level programming language

to assembly. However, unlike the classical setting, quantum

hardware is controlled via analog pulses. In our work, we

optimize the underlying pulse schedule by augmenting the set

basis gates to match hardware. Our compiler automatically op-

timizes user code, which therefore remains hardware-agnostic.

Section VIII presents results from application of these

techniques to full algorithms. We conclude in Section IX.

II. BACKGROUND

We assume some familiarity with the fundamentals of

quantum computing. Here we provide a brief review and

expand on elements relevant to our work.

A. The Qubit

The core unit involved in quantum computation is the qubit

(quantum bit). Unlike a classical bit which is either 0 or 1,

a qubit can occupy any superposition between the two states,

which are now denoted |0〉 and |1〉. The Bloch sphere, depicted

in Figure 2, is a useful visual representation of the possible

states of a qubit. The North Pole is the |0〉 state, and the South

Pole is the |1〉 state. The state of a qubit can be parametrized

by two angles, latitude and longitude. Upon measurement, a

qubit collapses to either the |0〉 or |1〉 state, with probabilities

dependent only on the latitude.

B. Quantum Gates

The set of valid single-qubit gates correspond to rotations

around the Bloch sphere. Arbitrary such rotations are typically

decomposed into Rx(θ) and Rz(θ) rotations around the X and

Z axes respectively, which are universal for single-qubit rota-

tions [12]. A prominent single-qubit gate is the X = Rx(180
◦)

gate, which in Figure 2 would rotate the green |0〉 state 180◦

around the X-axis to the |1〉 and vice versa. Thus, the X
operation implements the NOT gate.

Fig. 2: The points on the Bloch sphere correspond one-to-

one with possible qubit states. The green and brown states

correspond to |0〉 and |1〉 respectively. The blue state is in a

superposition described by latitude and longitude angles.

The set of possible multiple-qubit operations is much richer

than the set of single-qubit gates, and lacks a clear visualiza-

tion on the Bloch sphere. Remarkably however, any multiple-

qubit operation can be decomposed into single-qubit rotations

+ an entangling gate such as CNOT [12]. The CNOT gate

acts on a control and target qubit, and it applies X to the

target iff the control is |1〉. In part because the CNOT gate

is easy to understand, most quantum programs are expressed

in terms of it. By implementing a small set of gates: single

qubit rotations + CNOT, a quantum computer is universal.

Accordingly, quantum computers are generally designed with

this interface in mind. However, the lowest level of hardware

control is performed by microwave pulses. Foreshadowing the

main message of our paper: this pulse-backed layer actually

provides a richer and “overcomplete” set of gates that outper-

forms the standard interface for quantum programs.

C. Gate Calibration

To implement this standard interface of universal gates,

quantum computers are routinely calibrated to account for

continuous drift in the experimental setting [13], [14]. As a

concrete example, for superconducting devices, an Rx(90
◦)

gate is calibrated by performing a Rabi experiment [15]–[17]

that determines the necessary underlying pulses. An additional

DRAG [18]–[20] calibration fine-tunes the Rx(90
◦) gate by

cancelling out stray components. Calibrations in a similar spirit

are also performed for the two-qubit gate(s). An interesting

feature of the two-qubit gate calibrations is that they have

the side effect of also calibrating Rx(180
◦) pulses on each

qubit. We exploit this free calibration in Section IV. Typically,

RZ(θ) rotation gates do not require calibration because they

are implemented in software, as described in Section IV.

D. Experimental Setup

Our experiments were performed on IBM’s Almaden, a

20 qubit device [21]. Almaden is the first cloud-accessible

OpenPulse device. It comprises 20 transmon qubits, with mean

T1 and T2 coherence lifetimes of 94 and 88 μs respectively.

The mean single-qubit and two-qubit (CNOT) error rates are

0.14% and 1.78%. The mean measurement (readout) error was

3.8%, though we used measurement error mitigation [22], [23]

to correct for biased measurement errors.

187

Stage Notes Example

Programming
Language

High-level; hardware-unaware;
sophisticated control flow

qft(qc)

Assembly Usually 1- or 2- qubit arity
gates; minimal control flow

h q[0]

Basis Gates Like an HDL; hardware-aware
gate set

u1(3) q[0]

Pulse Schedule Analog waves across channels;
ultimate “at the metal” control

TABLE I: Summary of the four stages of a quantum compiler.

As of December 2019, IBM’s publicly cloud-accessible

OpenPulse device is the new Armonk device [24], which

we used for the most recent results in Figure 13. For both

Armonk and Almaden (and for IBM’s devices in general), the

calibrations described above are performed every 24 hours.

Our experiments ran around-the-clock via a cloud job queuing

system, with varying elapsed time to the prior calibration.

III. COMPILER FLOW

As depicted in Figure 1, quantum compilation proceeds

through four stages, from high-level to low-level: program-

ming language, assembly, basis gates, and pulse schedule. Also

shown is our alternative flow, which creates an augmented set

of basis gates and a more optimized pulse schedule. Table I

presents a summary of these four stages. We now discuss

existing implementations of these stages, why we should

augment the standard set of basis gates, our new compiler

framework, and the tradeoffs we considered when we designed

the framework.

A. Standard Flow

1) Programming Language: Quantum PLs are designed to

be user-friendly, with sophisticated control flow, debugging

tools, and strong abstraction barriers between target operations

and underlying quantum hardware. The most successful lan-

guages have been implemented as Python packages, such as

IBM’s Qiskit [25], Google’s Cirq [26], and Rigetti’s PyQuil

[27]. Others are written as entirely new languages, such as

Scaffold [28], [29] which is based on LLVM infrastructure;

Quipper [30] which is a functional language embedded in

Haskell; and Q# [31] which is Microsoft’s quantum domain

specific language.

2) Assembly: Quantum assembly languages are closer to

hardware, but still aim to be device-agnostic. Generally, the

assembly instructions only allow 1- or 2- qubit arity, since

hardware primitives act on only 1 or 2 qubits at a time1.

Quantum assembly is essentially equivalent to the quantum cir-

cuit representation of quantum programs. Prominent examples

include OpenQASM [6], Rigetti’s pyQuil [27], and TUDelft’s

cQASM [34].

1The notable exception is trapped ion quantum computers, which support
global entangling operations that simultaneously act on N qubits [32], [33].

3) Basis Gates: Basis gates are similar to assembly, but re-

expressed in terms of the gate set that hardware implements.

For example, while the well-known Controlled-Z instruction

is valid in assembly code, it would be re-written in basis

gates as a sequence of H and CNOT gates—which hardware

natively implements. The distinction between assembly and

basis gates is primarily a conceptual one; in Qiskit, Cirq, and

PyQuil, the basis gate and assembly layers are expressed in the

same software framework. In some other domains, for example

the Blackbird language [35] for continuous-variable quantum

computing, the assembly already resembles a hardware-aware

basis gate layer. Regardless of the relationship between be-

tween assembly and basis gates, our core observation in this

paper is that existing implementations of basis gate sets are

too far from pulse-level hardware primitives. We will expand

on this observation for the rest of the paper.

4) Pulse Schedule: The ultimate lowest-level control of a

quantum computer is a schedule of complex-valued analog

pulses, across multiple input channels. The image in Table I

shows a sample pulse schedule on a single channel. The input

channels are controlled by an Arbitrary Waveform Generator

(AWG) which outputs a continuous value on each channel

at every dt. Modern AWGs, such as the one in our experi-

mental realization using IBM’s Almaden system, achieve 4.5

Gigasamples per second, i.e. a new complex number every

0.22 ns.

The pulse schedule on drive channel j is referred to as dj(t)
and is complex-norm constrained by |dj(t)| ≤ 1. However,

qubits are not directly acted on by dj(t) or Re[dj(t)]. Instead,

the dj(t) signal is mixed with a local oscillator of frequency

fj , leading to a final signal

Dj(t) = Re[dj(t)e
ifjt] (1)

This equation will be relevant when we demonstrate qudit

operations in Section VII.

The translations from basis gates to pulse schedules are

known analytically. For example, in superconducting quan-

tum hardware, Rz basis gates are implemented in software

with zero-duration and perfect-accuracy via the virtual-Z-Gate

translation [36], [37]. The X basis gates is transformed into

almost-Gaussian “DRAG” pulses [18]–[20]. In the OpenPulse

interface, these translations are stored in the cmd_def object,

and reported by the hardware.

B. Motivation for Different Basis Gates

At a high level, our core observation is that existing basis

gates sets are too far from actual hardware primitives at the

pulse-level. This leads to missed opportunities for optimiza-

tion. Sections IV–VII will present optimizations resulting from

specific gaps between basis gates and pulse-level hardware

primitives. Table II introduces one such gap that we expand

upon in Section VI. Each row in the table is a two-qubit

operation. The columns express the cost2 of performing the

2Cost here means the number of two-qubit gates needed, since they
dominate both error and duration.

188

TABLE II: Costs of various two qubit operations, by Native gate. Cost reductions at the right indicate optimization opportunities.

One
√

iSWAP is treated as 0.5 cost, while iSWAP has 1.0 cost.

Decomposition Cost by Native Gate

“Textbook” Discrete Gates Half Parametrized

Operation Standard Circuit
Rep.

CNOT CR(90◦) iSWAP bSWAP MAP
√

iSWAP CR(θ)

CNOT • 1 1 2 2 1 1 1

SWAP • •
•

3 3 3 3 3 1.5 3

ZZ Interaction • •
Rz

2 2 2 2 2 1 1

ZZ swap • •
• Rz

3 3 3 3 3 1.5 3

Fermionic
Simulation

Rz
iSWAP

• Rz

Rz Z Rz

3 3 3 3 3 1.5 3

Fermionic
Fourier
Transformation

S†
iSWAP

S† 2 2 2 2 2 1 2

Bogoliubov
Transformation

2 2 2 2 2 1 2

target operation using the given native gate. We computed

these costs using Qiskit’s TwoQubitBasisDecomposer
tool, which uses the KAK decomposition [38] described

further in [39].

The CNOT column indicates the number of CNOT gates

needed to implement the target operation. CNOT is the default

“textbook” two-qubit gate, so algorithms are usually written

in terms of CNOT. The next group of four columns, Discrete

Gates, captures basis gates from

• Fixed-frequency superconducting qubits: 90◦ Cross-

Resonance [40]–[42], bSWAP [43], and MAP [44].

• Frequency-tunable superconducting qubits: iSWAP [45]

and also CZ [46], [47] which is omitted because it is

equivalent to CNOT.

• Quantum dot spin qubits: iSWAP [48]

• Nuclear spin qubits: iSWAP [49]

All four of these columns have identical costs to the CNOT

column. As a result of this parity, the prevailing sentiment

in current quantum compilation software is that these basis

gates are equivalent. Moreover, since quantum algorithms are

usually written in terms of CNOTs, there is not an obvious

reason to deviate from these basis gates.

The two rightmost columns, challenge this sentiment. The√
iSWAP reflects the fact that quantum hardware allows one

to perform “half” of an iSWAP by damping the pulse shape of

a standard iSWAP gate. This Half-gate leads to significant im-

provements over full iSWAPs–each row’s cost is halved. The

CNOT decomposition and SWAP decomposition are known

[50], [51], but to the best of our knowledge, the ZZ Interaction

(ubiquitous operation for quantum chemistry and optimization

algorithms) and Fermionic Simulation (ubiquitous for quantum

chemistry) decompositions are not previously known. They

will have immediate applications on hardware that supports√
iSWAP such as frequency-tunable superconducting qubits,

quantum dot spin qubits, and nuclear spin qubits.

The rightmost column, bolded because it was our experi-

mental target, reflects the fact that fixed-frequency supercon-

ducting qubits support parametrized Cross-Resonance(θ) via

pulse stretching. Since the native gate is parametrized, we used

a different approach to compute the decomposition costs in

its column. Specifically, we used the COBYLA constrained

optimizer [52] in Scipy [53], with the constraint of finding a

99.9+% fidelity decomposition. Subject to this constraint, our

decomposer minimizes the cost of the CR(θ) gates needed to

perform the target operation. Observe that ZZ Interaction is 2x

cheaper with a Parametrized CR(θ) gate than with the standard

CR(90◦) gate. The ZZ Interaction is in fact the most common

two qubit operation in near-term algorithms. This optimization

is expanded upon in Section VI.

Our method is extensible to other systems including trapped

ions. Some of the trapped ion decompositions have already

been studied in recent publications [54]–[56]. In Sections IV–

VII, we present experimental realizations on IBM hardware,

which corresponds to the CR(θ) column of Table II. However,

our compiler framework is general and extends similarly to

other native gate decompositions.

189

• • Rz(γ) •
Rz(θ)

(a) Input

• • • Rz(γ)

Rz(θ)

(b) CD-pass transposes

gates.

• • • Rz(γ)

Rz(θ)

(c) ABGD-pass matches

template.

ZZ(θ)
• Rz(γ)

(d) Final

Fig. 3: Depiction of our compiler passes for commutativity

detection (CD) and augmented basis gate detection (ABGD).

C. Design of Our Compiler

Our compiler is implemented as a fork of Qiskit. While

Qiskit has traditionally been used in conjunction with IBM

superconducting quantum computers, it is a generic framework

that supports any underlying quantum hardware. For example,

trapped ion quantum computer vendors have recently inte-

grated with Qiskit [57], and OpenPulse support was recently

added [58] to the XACC infrastructure for quantum-classical

computing [59]. Thus our framework is general, though we

performed our experimental realizations on IBM hardware,

which is the first to implement OpenPulse.

Our compiler maintains the overall structure of Qiskit,

which is already designed with extensibility in mind. As

discussed previously, we augment the set of basis gates to

better match pulse-level primitives. To support this augmented

basis gate set, we re-write the decomposition rules from

assembly instructions to basis gates and add new translations

(to cmd_def) that convert augmented basis gates to pulse

schedules. We expand on the augmented basis gates in Sec-

tions IV–VII.

To take advantage of the augmented basis gates, we added

Qiskit transpiler passes, which convert input quantum as-

sembly into optimized quantum assembly in the spirit of

LLVM Transform passes. Our transpiler passes automatically
optimize user code by using the augmented basis gates. One

transpiler pass traverses a DAG-representation of the quantum

assembly and pattern matches for templates that represent

sequences of gates (such as the ZZ Interaction) that reduce

to an augmented basis gate. We also include a commutativity

detection transpiler pass that performs this pattern matching

even when obfuscated by false dependencies in intermediate

gates; this pass is inspired by techniques described in [60].

Figure 3 shows an example of these two passes. Through these

two passes, we maintain the “write-once target-all” behavior

of user-written code, which can remain hardware agnostic.

D. Compiler Design Tradeoffs

Another compiler design we considered is Quantum Op-

timal Control [61], [62], which translates directly from the

programming language (specifically from the quantum cir-

cuit’s overall unitary matrix) down to highly optimized pulses.

QOC has been explored extensively in physics communities

and more recently from an architectural perspective [60], [63],

[64].

QOC is indeed a promising path for future machines, and in

fact our original aim was to perform pulse-shaping via optimal

control. However, our experience revealed experimental road-

blocks. First, QOC requires faithful analog pulse generation.

However, the actual pulses that reach qubits are limited by the

AWG’s finite sampling rate and by the temperature difference

between classical electronics and the cold qubits. The former

problem can be mitigated by smoothness constraints in the

QOC engine, but doing so diminishes both the potential

advantage of QOC and the reliable convergence of QOC

algorithms [64], [65]. The latter problem is currently a major

experimental barrier that requires a phase offset calibration

for every candidate pulse [7, Appendix B]. Second, QOC

requires a faithful characterization of the device Hamiltonian,

since pulses designed from an inaccurate Hamiltonian accu-

mulate substantial error. However, Hamiltonians are difficult to

measure experimentally and moreover, they drift significantly

between daily recalibrations. In addition, QOC requires eval-

uation of partial derivatives of a fidelity metric—a task that is

easy analytically or in simulation, but extremely difficult with

noisy experimental measurements.

Our experience is mirrored by other work on QOC—the

vast majority of prior work has been performed via simulation.

The few experimental realizations of QOC generally focus on

state preparation (easier than unitary synthesis), e.g. [4], [5].

Moreover, these experiments impose significant Hamiltonian

tomography or calibration overhead, for example staggered

field calibration [5]. Experimental realizations on supercon-

ducting qubits, whose Hamiltonians drift over time [13], [14],

are even more rare. In fact, the state-of-art for pulse shaping

on superconducting qubits has eschewed QOC entirely [66],

focusing instead on a closed-loop feedback for tuning pulses.

We refer to [66] for further details on the experimental barriers

to QOC, particularly in superconducting qubits.

Our approach to pulse-shaping arose from these limitations.

In particular, our techniques are bootstrapped from the stan-

dard basis gate calibrations, which are already performed daily.

By decomposing and then re-scaling the pre-calibrated pulses,

we generate an augmented basis gate set, without ever requir-

ing the device Hamiltonian. We emphasize that our technique

can be applied on current cloud-accessible quantum devices,

as documented in our Github repository [11]. Moreover, while

QOC generally leads to convoluted pulses, our pulses are very

simple. This simplicity minimizes the possibility of control

errors and also leads to greater interpretability.

190

IV. OPTIMIZATION 1: DIRECT ROTATIONS

We now present the first of our four optimizations enabled

by pulse control. The gist of this optimization is that pulse-

level control enables us to perform single-qubit gates (qubit

state rotations on the Bloch sphere) via a direct trajectory,

saving time and potentially reducing errors.

It can be shown that any arbitrary single-qubit gate, termed

U3 in Qiskit, can be implemented by tuning up a single pulse

that rotates the qubit state by 90 degrees around the X axis

(the Rx(90
◦) pulse). This is doable due to the following

identity, and due to the fact that rotations about the Z axis

can be implemented in software at no cost (implemented by a

compiler transformation on all future gates involving the target

qubit) [36].

U3(θ, φ, λ) = Rz(φ+90◦)Rx(90
◦)Rz(θ+180◦)Rx(90

◦)Rz(λ)
(2)

The above is extremely attractive from a hardware calibra-

tion perspective, since it suggests that fine tuning one pulse

is enough to achieve high-fidelity single-qubit gates. In fact,

this is how these gates are implemented on IBM quantum

computers. We now present experimental evidence that access

to one more calibrated gate, as well as pulse control, gives the

compiler the ability to optimize single-qubit gates further.

A. Direct X gates

We first consider the simple X operation, which acts as

a NOT by flipping |0〉 and |1〉 quantum states. X gates are

ubiquitous in algorithms. Our approach relies on access to the

X = Rx(180
◦) rotation, which is already pre-calibrated, as

discussed in Section II-C. In our experiments we had access

to such a pulse, but one could also be calibrated by the user

through OpenPulse. We emphasize that this extra pulse is

not strictly necessary for universal computation. However, we

use it to demonstrate the power of an overcomplete basis for

optimizations.

Qiskit’s standard compilation flow decomposes an X oper-

ation into a U3 instruction per equation 2. At the pulse level,

the U3 instruction is implemented by two consecutive Rx(90
◦)

pulses. Together these complete an X gate (i.e. 180◦ rotation).

However, the indirection of implementing X with two

Rx(90
◦) pulses becomes unnecessary in the presence of a pre-

calibrated Rx(180
◦) gate. The procedure for calibrating such

a gate is very similar to the Rx(90
◦), and its direct calibration

has benefits beyond our discussion here [15]–[17], [67]. On

IBM hardware enabled with OpenPulse, this pulse is readily

available in the backend pulse library.

In our compiler, we exploit this simple observation by

augmenting the basis gates with a DirectX gate, which is

linked to the Rx(180
◦) pulse that is already calibrated on

the quantum computer. This gate is twice as fast as Qiskit’s

standard X gate, and has 2x lower error, as measured through

quantum state tomography experiments.

Figure 4 depicts a comparison of pulse schedules used to

achieve the X gate in 71.1 ns in the standard framework vs.

Fig. 4: Pulse schedules for the X gate via standard compilation

(top) versus via direct compilation via our approach (bottom).

Time is in units of dt = 0.22 ns. Thus, the DirectX gate

takes 35.6 ns, twice as fast as the 71.1 ns standard X gate.

35.6 ns in our optimization. It also illustrates why these two

pulse schedules are logically equivalent: they have the same

(absolute) area-under-curve. To a first approximation—which

we will refine below—this area determines how much rotation

is applied.

We next consider more sophisticated direct rotation gates.

B. Direct partial rotation about the X axis

Since OpenPulse gives us access to arbitrary pulse en-

velopes, it is natural to ask whether “partial” rotations about

the X axis (Rx(θ) gates) can be realized more efficiently

without invoking two discrete Rx(90
◦) pulses (as done by the

standard Qiskit decomposition in Equation 2). Our compiler

does this by downscaling the amplitude of the pre-calibrated

Rx(180
◦) pulse by θ

180◦ to achieve the Rx(θ) rotation. We

represent this as the DirectRx(θ) augmented basis gate in

our compiler. Since we rely on the pre-calibrated Rx(180
◦)

this technique imposes no calibration overhead.

The results of our experiments with the new DirectRx(θ)
are summarized in Figure 5. Bypassing the gate abstraction,

our technique speeds up all Rx rotations by 2x and has 16%

lower error on average. We discuss the source of the error

reduction in Section VIII-C.

In the next subsection, we will note how DirectRx(θ)
generalizes to arbitrary-axis rotations for free.

C. Optimizing generic rotations

Equipped with an augmented gate set that implements

arbitrary X axis rotations at reduced cost, we now show that

all single-qubit gates can be achieved with one pulse. Recall

that in standard Qiskit compilation, general single qubit gates

are implemented via two Rx(90
◦) pulses and three no-cost Rz

frame changes. However, we can write the same gate as [12]:

U3(θ, φ, λ) = Rz(φ+ 180◦)Rx(θ)Rz(λ− 180◦) (3)

Recall that Rz rotations are implemented by frame changes

with perfect fidelity and 0 duration. Thus, this implies that

any single-qubit gate can be performed using direct Rx(θ)
rotations, sandwiched by free Rz gates.

191

Fig. 5: Illustration of gate-level vs. pulse-level rotation about

the X axis. (top) Trajectory of an Rx(67
◦) rotation, and the

pulses that implement them. Standard gate-based compilation

(red) includes two applications of the pre-calibrated Rx(90
◦)

pulse (interleaved with Rz (frame changes) which are zero-

cost and in software). Optimized pulse-based compilation

takes the shortest path from origin to destination, with only one

scaled pulse. (bottom) Fidelity of Rx(θ) rotations. Each data

point is obtained using quantum state tomography experiments

to rotate around the X axis by θ. Standard gate-compiled rota-

tions (red) show more jitter from ideal, and 16% higher error

on average, compared to optimized pulse-compiled rotations

(green).

D. Compiler implications

In the preceding subsection, we showed how an augmented

gate set can be beneficial. However, the compiler now has

more than the minimum set of pulses to work with to realize

a quantum gate. In order to decide which pulses to use when,

we need a deeper understanding and characterization of the

errors incurred by Rx(θ) gates for arbitrary θ. We can use

this system characterization to inform the compiler about the

best pulse substitution strategy.

We performed pulse simulations and real experiments to

gain insight into the errors. Our simulations were done using

Qiskit’s OpenPulse simulator. We enhanced the simulator

to find the Hamiltonian terms for IBM’s Almaden system,

through a reverse-engineering process and fitting the results

to the device-reported pulse library.

Taking Almaden’s pre-calibrated direct X pulse (DRAG

pulse), we scaled the area-under-curve down by a factor of
0
40 ,

1
40 ,

2
40 , ..., 1. To first order, these should perform Rx(θ)

for θ = 0◦, 4.5◦, 9◦, ..., 180◦. For each angle, we performed

(a) Sweeping 41 angles from θ = 0◦

in green to θ = 180◦ in orange.
(b) XZ trajectory slightly
deviates from X = 0.

Fig. 6: Simulated results for Direct Rx(θ). The inset magnifies

the X component.

Fig. 7: Experimental results for Direct Rx(θ) on IBM’s

Almaden system, based on 3× 41× 1000 = 123k shots. This

empirical characterization of dephasing from the Meridian can

be used to make the gate better at each θ.

three simulations and three experiments to measure the X , Y ,

and Z components of the final quantum state, which allows

us to plot on the Bloch sphere.

Figure 6 depicts the results of simulation. Plotting only the

X-Z plane, we see that deviations from the Prime Meridian are

quite small, but do have a sinusoidal pattern (at exactly 0◦, 90◦,
and 180◦, there is no dephasing). These simulation results are

in agreement with an independent simulation from [37].

The experimental results are presented in Figure 7. We note

two deviations from simulation: (1) the X components are still

sinusoidal but now translated to the right and (2) the magnitude

of the X-component deviations are larger. However, we can

treat these characterization results with an empirical attitude—

now that we know the dephasing at each θ value point, we can

perform an Rx(θ) gate by applying a scaled-down X pulse,

and then correcting the phase error in accordance with the data

in Figure 7.

192

V. OPTIMIZATION 2: CROSS-GATE PULSE CANCELLATION

The gist of this optimization is that standard basis gates

are not atomic3, despite conveying this perception. By aug-

menting basis gates with the true atomic primitives, new gate

cancellation opportunities emerge that lead to 24% speedups

for common operations.

A. Theory

Generally, two-qubit basis gates are not atomic. For exam-

ple, in Qiskit, the CNOT basis gate is implemented at the pulse

level as a combination of single qubit gates, plus invocations

of the hardware primitive Cross-Resonance pulse:

• = X
CR(−45◦)

X
CR(45◦)

Rx(90
◦)

Notice in particular, that even the invocation of the hardware

primitive Cross-Resonance pulse is not a clean atomic unit,

but is decomposed into two pulses separated by an X gate.

This “echoed” Cross-Resonance pulse design is necessary to

perform a CR(90◦) gate (which is the generator of CNOT)

with high fidelity [68].

This analysis reveals there are opportunities for gate can-

cellation on either side of the CNOT4. In fact, such sequences

are common. To enable these cancellations, we augment the

basis gate set with the hardware primitive CR(±45◦) basis

gates, which are free from pre-calibrated CNOTs. We replace

the assembly instruction for CNOT into this decomposition

and invoke Qiskit’s optimizer to perform gate cancellations.

B. Application

To demonstrate our technique, we benchmarked using

a common operation: the open-Controlled-NOT. The open-

CNOT has the “opposite” behavior as a CNOT: it flips the

target if the control is |0〉 and does nothing if the control is

|1〉. Its implementation via the CNOT basis gate is simple:

first an X on the control, then a standard CNOT, and then

another X to restore the control.

However, by decomposing the CNOT into our augmented

basis gates, the first X on the control cancels with the

“internal” X in the decomposition of CNOT. Figure 8 depicts

the pulse schedules for the open CNOT under standard com-

pilation (top) and via our compilation (bottom). Notice that

two X’s in the red box cancel out, leading to a 24% reduction

in runtime.

We tested the open-CNOT pulse schedules experimentally.

To isolate the effect of cross-gate pulse cancellation, we

performed the direct X gate from the previous section in

3We use atomic in the common-usage sense of something that cannot
be decomposed into something else more fundamental. This should not be
confused with technical meanings of atomicity in computing.

4The circuit decomposition clearly depicts gate cancellation opportunities
on the left side of the CNOT with the X and Rx(90◦) gates; alternatively,
the top X can be shifted rightward by commutation identities to create
cancellation opportunities on the right side

Fig. 8: Pulse schedules for the open-CNOT by standard

compilation (top) and our optimized compilation (bottom). Our

compiler cancels out the X rotation gates in the red box and

combines the two Rx(−90◦) pulses in the green box into a

single Rx(180
◦) = X pulse. This reduces the total duration

by 24% from 1984 dt to 1504 dt.

both variants. The resulting data indicates a modest increase

in success probability from 87.1(9)% to 87.3(9)%, measured

over 16k shots (hence the Bernoulli standard deviation of

0.09%). While this is a small improvement in isolation, it is

a lower bound that is magnified when we consider larger-

width circuits. For example, in Figure 2 of [69], each of the

2m− 2 open-CNOTs is performed while m− 1 other qubits

are idle. Thus, speeding up these open-CNOTs also reduces

the accumulated decoherence across the other qubits.

We emphasize that the open-CNOT is just one of many

typical quantum operations that have Rx rotations next to two-

qubit basis gates. Our compiler takes advantage of all such

cancellation opportunities, which are otherwise invisible at the

granularity of standard, non-atomic basis gates.

VI. OPTIMIZATION 3: TWO QUBIT OPTIMIZATIONS

The gist of this optimization is that standard basis gates

lead to inefficient decompositions of important two-qubit op-

erations. Instead, we can use pulse-level hardware primitives

as new basis gates that lead to operations with 60% lower

error.

A. Theory

Recall from Table II that two-qubit operations can be

achieved by using a “half” or parametrized basis gate set.

For example, data movement (SWAP) is 2x more costly on

superconducting qubits with an iSWAP basis gate than on

qubits with a
√

iSWAP basis gate.

Here, we study basis gate decompositions using the

parametrized Cross-Resonance pulse CR(θ), which is the

193

Fig. 9: Tomography on the target qubit in Cross-Resonance(θ)

pulse. Results from both experiment and simulation agree with

ideal results. 41× 3× 2× 1000 = 246k shots.

pulse-level hardware primitive on IBM devices. However, we

again emphasize that our compiler techniques immediately

generalize to any other basis gate decompositions.

As discussed in Section V, neither CR(θ) nor even

CR(90◦) are exposed as standard basis gates. Our com-

piler first extracts the pulse for the CR(90◦) gate from the

cmd_def pulse schedule for the CNOT basis gate. Then,

to implement CR(θ) for arbitrary θ, we horizontally stretch

the CR(90◦), guided by knowledge of IBM’s specific “active

cancellation echo” implementation of the Cross-Resonance

pulse [67], [70].

Figure 9 shows our experimental results, which closely track

with the ideal curve. Given the successful implementation of

CR(θ) at the pulse level, we added it as a new basis gate.

B. Application

As indicated by the last row of Table II, the “ZZ In-

teraction” two-qubit operation can be implemented using a

single CR(θ) gate. By contrast, the “textbook” implementation

using standard basis gates requires two CNOTs. The CR(θ)

decomposition is depicted below. While this decomposition is

fairly simple in hindsight, we discovered it computationally

using the optimization procedure mentioned in Section III-B.

• •
Rz(θ)

=
CRθ

H H

To experimentally verify our ZZ Interaction technique, we

implemented it using both the standard compiler (i.e. CNOT,

Rz(θ), CNOT) and our optimized compiler (H, CR(θ), H) for

θ spanning from 0◦ to 90◦ in 4.5◦ increments. As shown in

Figure 10, our compiler achieves better results, with a 60%

average reduction in error (state infidelity).

Fig. 10: Experimental results for state fidelity, measured for

the ZZ Interaction by standard compilation vs. our optimized

compilation. These results reflect 21× 2× 2000 = 84k shots.

Standard and optimized have fidelities of 98.4% and 99.0%

respectively. Thus, our compiler achieves an average 60%

reduction in error for the ZZ Interaction.

As we will see in Section VIII’s Benchmark Results, the

ZZ Interaction is the most frequent two-qubit operation in

near-term algorithms. Thus, this optimization is the dominant

source of improvements in full benchmarks. Before contin-

uing, we re-iterate that our compiler passes (as discussed

in Section III-C) automatically identify ZZ Interactions in

user-code, even when obfuscated by false data dependencies.

Therefore, programmers may continue to write code using

“textbook” CNOT decompositions and do not need to reason

about device physics.

VII. OPTIMIZATION 4: QUDIT OPERATIONS

The gist of this optimization is that access to quantum

hardware at the pulse level enables us to control energy states

outside the qubit subspace. In particular, we can instead control

our information carriers as d-level qudits. We experimentally

demonstrate this idea, by introducing three augmented basis

gates for |0〉 ↔ |1〉, |1〉 ↔ |2〉, and |2〉 ↔ |0〉, as well as

a measurement discriminator for the three qutrit states. This

enables us to implement a base-3 counter using a single qutrit,
a task that would be impossible with a single qubit and enables

using these energy states for more efficient gate decompo-

sitions [71]. The counter achieves high fidelity, suggesting

practical near-term applications.

A. Theory

Many quantum systems used to realize a qubit have other

energy levels present, which can be used to construct quantum

gates [72]–[74] or, as we demonstrate in this paper, to realize

d-level qudits. Substantial prior work observed an “informa-

tion” compression advantage from using 3-level qutrits or

higher level qudits [75], which has been further applied to

specific algorithms such as Grover search [76]–[79] and Shor

factoring [80]. More recent work [71] has even demonstrated

exponential gains from using qutrits to implement common

operations like the Generalized Toffoli.

However, across nearly all quantum hardware and associated

software, standard basis gates are only written to address the

qubit subspace of hardware. This is the case in part because the

194

local oscillator described in Section III-A4 is set to oscillate

at the energy gap between the |0〉 and |1〉 energy states, f01.

Since higher level states are separated by different energy

gaps, under normal operation, gates can only address this qubit

subspace.

However, we can circumvent this limitation by carefully

designing our pulse schedule. For example, suppose we want

to address the |1〉 to |2〉 transition subspace, whose energy gap

we denote as f12 = f01+α. Per Equation 1, applying a dj(t) =
e−iαt pulse yields a total output of eif12t. Thus, by designing a

frequency-shifting pulse schedule, we can change the effective

frequency of the local oscillator and target subspaces beyond

the |0〉 to |1〉 regime.

B. Application

By transitioning to these higher energy levels one at a time

we can realize a base-d “counter”. Not only is this a good

benchmark for qudit control, it has potential application in

both the near-term era and beyond. In the near-term era, parity

checks are commonplace [81] and a counter (modulo d) serves

this exact purpose. Qutrit measurement also enables error

mitigation by detecting accidental leakages outside the qubit

subspace [82], a technique that has immediate application to

error mitigation for near-term algorithms. Beyond the near-

term era, function evaluation oracles are ubiquitous and can be

sped up via a counter. For example, recent work demonstrated

that just a single qudit, acting as parity check, can implement

an oracle-based quantum algorithm [83].

Here we demonstrate the ability to implement a counter

via microwave control of a superconducting qubit, using two

transitions previously inaccessible by standard basis gates.

Specifically, we target the f12 and f02/2 transitions (bottom

right panel of Figure 11) which act on the |1〉 to |2〉 subspace

and the |0〉 to |2〉 subspace respectively. The required drive

strength and duration for these different transitions are dictated

by the inherent coupling between each of the levels of interest,

which is determined by the physics of the device. In the

case of the two photon f02/2 transition, the coupling between

the |0〉 and |2〉 states is suppressed and thereby requires

larger drive powers than those needed for an X gate between

|0〉 → |1〉 transitions, with single photon powers around

pone ≈ 0.109a.u. and two photon powers of ptwo ≈ 0.44a.u.,

each 35ns in duration. The f12 frequency can be measured

either by applying an X gate on the |0〉 → |1〉 transition and

subsequently performing qubit spectroscopy, or by driving a

two photon f02/2 transition and using the prior knowledge

of f01 to determine f12. Once the transition frequencies are

identified, we calibrate the proper amplitude and duration of

the pulses to fully switch the qubit to the desired final state.

To gauge the fidelity of our counter, we start off by training a

linear discriminator to identify the qutrit state upon readout. In

the case of this work, we train a sklearn [84] Linear Discrim-

inant Analysis classifier with the calibrated qutrit |0〉 , |1〉 , |2〉
states and corresponding resonator IQ values (left panel of

Figure 11). Once these calibrations are made, we measure the

percentage of shots that have the qutrit in the |0〉 state at the

Fig. 11: (Left Panel) IQ Plot of readout resonator for different

quantum states, and the specific cycle we follow. (Top Right)

Percentage of shots found in the ground state as a function

of the number of cycles. (Bottom Right) Different transition

frequencies for the first three energy levels of a superconduct-

ing qubit with 2πf01 ∼ 5GHz and α ∼-300MHz and a two

photon transition. These results span 150k experimental shots

on IBM Almaden.

end of the cycle. Due to imperfections in microwave control,

our results deviate from the ideal of 1.0 as the number of cycles

increase, making this an ideal testbed for further research such

as improved microwave control [85], [86] and optimal readout

parameters [87]. Nonetheless, the results indicate remarkably

high fidelity—we can drive 60 cycles or 180 hops, before

“dropout” exceeds 40%.

VIII. RESULTS AND DISCUSSION

A. Benchmarks

We applied our compiler towards full quantum algorithms.

Before proceeding, we note two thematic differences between

our treatment of experimental benchmarks and that done in

recent architectural work.

First, we focus exclusively on near-term algorithms. Some

recent work [13], [14], [88]–[90] demonstrated impressive

compiler optimizations for algorithms like Bernstein-Vazirani

[91], Hidden-Shift [92], Adders, and Quantum Fourier Trans-

form [93]. However, we emphasize that these algorithms

are not representative of near-term algorithms, which are

generally based on a Hamiltonian simulation kernel that

quantum computers can naturally compute efficiently. Hamil-

tonian simulation, and thus near-term algorithms broadly, are

dominated by the ZZ Interaction optimized in Section VI. We

specifically evaluated three types of near-term algorithms: (1)

Variational Quantum Eigensolver (VQE) [94], which addresses

minimum-eigenvalue problems such as molecular ground state

estimation; (2) Quantum Approximate Optimization Algo-

rithm (QAOA) [2], which approximates solutions to NP-Hard

combinatorial optimization problems; and (3) Hamiltonian Dy-

namics, which models molecular dynamics and was recently

adapted for near-term applications [95], [96].

Second, we use Hellinger error/distance (or its comple-

ment, Hellinger fidelity) as our top-level metric. Intuitively,

195

Fig. 12: Reduction in error (Hellinger distance) for bench-

marks, due to our optimizations. These results reflect 6× 2×
8000 = 96k shots on IBM Almaden.

Hellinger error captures the distance between two probability

distributions: two identical distributions have the minimum

distance of 0 and two completely antipodal distributions have

the maximum distance of 1. Often, it is appealing to use Prob-

ability of Success (i.e. of finding the MAXCUT) as the top-

level metric for algorithms like QAOA-MAXCUT [97], [98].

However, QAOA is not intended to find the MAXCUT with

100% successful probability (otherwise it would solve NP-hard

problems in polynomial time), so a QAOA experiment with

100% “Probability of Success” would actually reflect high

error. Instead, QAOA is intended to compute a distribution
of measurement outcomes, within which bitstrings with large

cuts will have boosted probabilities. This motivates our use of

Hellinger error, and we urge subsequent experimental work to

also evaluate near-term algorithms on the basis of probability-

distribution distances.

B. Results

Figure 12 shows the reduction in error due to our optimiza-

tions. The H2 and LiH VQE benchmarks replicate recent ex-

perimental work, [99] and [54] respectively. Both experiments

are based on the Unitary Coupled Cluster ansatz [100]. The

QAOA benchmarks compute MAXCUT on an N-qubit line

graph. The Hamiltonian dynamics simulation benchmarks both

simulate 6 Trotter steps. The methane and water Hamiltonians

were generated with OpenFermion [101], taking advantage of

orbital reductions to reduce the problems to two qubits.

For all six benchmarks, our optimized programs run with

much lower error (Hellinger distance/infidelity) between the

actual and target outcome distributions. The average error

reduction factor is 1.55x and the largest benchmark, 5 Qubit

QAOA, has a 2.32x reduction in error from 33.7% to 14.5%.

The majority of our error reduction stems from our opti-

mization of the ZZ Interaction by augmenting the basis gates

with direct access to the Cross-Resonance pulse. We focus on

Hellinger error because it is accepted in the quantum commu-

nity as an (in)fidelity metric and has a “linear” interpretation.

The average 1.55x error reduction factor is comparable to a

year worth of hardware progress; of course, our method is

achievable now and is performed in software. Similar work for

QAOA was also recently demonstrated on Rigetti’s hardware,

using a parametrized XY interaction [102].

In addition to the six qubit benchmarks, we also ran the

qutrit incrementer in Section VII and demonstrated 60 cycles,

i.e. 180 increment operations, before “dropout” exceeds 40%.

This benchmark is unique, because it has no standard qubit

comparison—a single qubit cannot model a base-3 counter.

This high-fidelity qutrit control confirms that pulse-backed

basis gates offer a promising path towards qudit-based op-

timizations.

C. Source of Fidelity Improvements

The fidelity improvements presented here have three

sources:

1) Shorter pulses. Our compiler’s optimized pulses are

shorter: 2x shorter for the single qubit rotations in

Optimization 1, 24% shorter for open-CNOTs due to

Optimization 2, and ∼2x shorter for ZZ interactions due

to Optimization 3. These lower operation latencies are

advantageous because qubits have less time to decohere.

2) Less calibration error susceptibility. DirectRx(θ)
only applies one pre-calibrated (and then amplitude-

downscaled) pulse. By contrast, the standard decom-

position applies two pre-calibrated pulses, squaring the

impact of calibration imperfections.

3) Smaller pulse amplitudes. Our pulse shaping tech-

niques either vertically downscale amplitudes (Opti-

mization 1) or horizontally stretch pulses (Optimization

3). As such, our pulse amplitudes are smaller than or

equal to those generated by standard compilation. This is

beneficial because smaller pulse amplitudes have smaller

spectral components, reducing leakage to undesired fre-

quency sidebands—see Figure 14 in [37] for details.

Our experience indicates that all three of these sources

have meaningful contribution to the fidelity improvements.

To further understand our fidelity improvements and reduce

the impact of State Preparation and Measurement errors, we

performed a Randomized Benchmarking [103] style experi-

ment. In the experiment, we select K − 1 random single-

qubit unitary operations. We execute these K − 1 operations,

terminated with 1 final single-qubit operation that inverts

all of the preceding operations. Therefore, under noise-free

execution, the qubit returns to the initial state of |0〉 with 100%

probability. However, due to noise, error accumulates as we

increase K from 2 to 25.

Figure 13 presents our results, which ran over several hours

on IBM’s Armonk device. The optimized plot results from

compiling with Optimization 1: Direct Rotations. However,

to isolate the effect of shorter pulses, we also compiled

optimized-slow, which inserts NO-OP idling into the optimized

pulse schedules, to match the duration of the standard pulse

schedules.

196

Fig. 13: Randomized Benchmarking style experiment, fit to

exponential decay. For each K, we randomized 5 sequences

of unitary operations. 5× 24× 3× 8k = 2.88M total shots.

Each trajectory was fit to the exponential decay, fK − b,
where b is a y-intercept term that represents SPAM errors

independent of K, and f is interpreted as gate fidelity.

The resulting gate fidelities for optimized, optimized-slow,

and standard are f = 99.87%, 99.83%, and 99.82%. This

implies that shorter pulses (#1) account for 70% of the

fidelity improvement, while less susceptibility to calibration

imperfection (#2) and smaller pulse amplitudes (#3) account

for the remaining 30% improvement. The improvement due to

shorter pulses matches theoretical predictions: according to the

gate error in coherence limit calculation, the 2x pulse speedup

yields a minimum 0.01% fidelity improvement.

IX. CONCLUSION

Our results demonstrate that augmenting basis gates with

pulse backed hardware primitives, bootstrapped from existing

calibrations, leads to 1.6x error reductions and 2x speedups

for near-term algorithms. Critically, our technique does not

rely on knowledge of the system Hamiltonian, thus bypassing

the experimental barriers to quantum optimal control. The

measured fidelity improvements are equivalent to a year’s

worth of hardware progress, but our techniques are available

immediately, through software.

We hope that our experiences with OpenPulse will encour-

age more quantum vendors to expose their hardware to pulse-

level control. To this end, all of our code is available on Github

[11] and can be used to run optimized quantum programs

today. More broadly, our research suggests that hardware

vendors should revise their basis gates to align more closely

to what hardware can natively perform. On IBM systems, we

saw significant gains from making the two-qubit basis gate the

parametrized CR(θ) instead of the fixed CNOT. Similar gains

can be achieved by exposing native two-qubit interactions—

especially parametrized ones—as basis gates.

ACKNOWLEDGEMENTS

This work is funded in part by EPiQC, an NSF Expedition

in Computing, under grants CCF-1730449; in part by STAQ

under grant NSF Phy-1818914; and in part by DOE grants DE-

SC0020289 and DE-SC0020331. This research used resources

of the Oak Ridge Leadership Computing Facility, which is a

DOE Office of Science User Facility supported under Contract

DE-AC05-00OR22725. Pranav Gokhale is supported by the

Department of Defense (DoD) through the National Defense

Science & Engineering Graduate Fellowship (NDSEG) Pro-

gram.

REFERENCES

[1] S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan,
“Quantum computational chemistry,” arXiv preprint arXiv:1808.10402,
2018.

[2] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[3] E. R. Anschuetz and C. Zanoci, “Near-term quantum-classical associa-
tive adversarial networks,” arXiv preprint arXiv:1905.13205, 2019.

[4] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu, Q. Guo,
Z. Wang, W. Ren, J. Hao, et al., “Generation of multicomponent atomic
schrodinger cat states of up to 20 qubits,” Science, vol. 365, no. 6453,
pp. 574–577, 2019.

[5] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi,
H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, et al., “Generation and
manipulation of schr\” odinger cat states in rydberg atom arrays,” arXiv
preprint arXiv:1905.05721, 2019.

[6] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop,
J. Chen, J. M. Chow, A. D. Córcoles, D. Egger, S. Filipp, et al., “Qiskit
backend specifications for openqasm and openpulse experiments,”
arXiv preprint arXiv:1809.03452, 2018.

[7] T. Alexander, N. Kanazawa, D. J. Egger, L. Capelluto, C. J. Wood,
A. Javadi-Abhari, and D. McKay, “Qiskit pulse: Programming quantum
computers through the cloud with pulses,” 2020.

[8] S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller,
J. Luetolf, C. Eichler, and A. Wallraff, “Engineering cryogenic setups
for 100-qubit scale superconducting circuit systems,” EPJ Quantum
Technology, vol. 6, no. 1, p. 2, 2019.

[9] J. Garmon, R. Pooser, and E. Dumitrescu, “Benchmarking noise
extrapolation with openpulse,” arXiv preprint arXiv:1909.05219, 2019.

[10] “Ibm q experience.” https://quantum-computing.ibm.com/, 2019.

[11] “Optimizations via openpulse.” https://github.com/singular-value/
optimizations via openpulse, 2020.

[12] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[13] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and
M. Martonosi, “Noise-adaptive compiler mappings for noisy
intermediate-scale quantum computers,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 1015–1029, ACM, 2019.

[14] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a
case for variability-aware policies for nisq-era quantum computers,”
in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems, pp. 987–999, ACM, 2019.

[15] J. Majer, J. Chow, J. Gambetta, J. Koch, B. Johnson, J. Schreier,
L. Frunzio, D. Schuster, A. A. Houck, A. Wallraff, et al., “Coupling
superconducting qubits via a cavity bus,” Nature, vol. 449, no. 7161,
p. 443, 2007.

[16] Y. Galperin, D. Shantsev, J. Bergli, and B. Altshuler, “Rabi oscillations
of a qubit coupled to a two-level system,” EPL (Europhysics Letters),
vol. 71, no. 1, p. 21, 2005.

[17] S. Ashhab, J. Johansson, and F. Nori, “Rabi oscillations in a qubit
coupled to a quantum two-level system,” New Journal of Physics,
vol. 8, no. 6, p. 103, 2006.

[18] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, “Simple
pulses for elimination of leakage in weakly nonlinear qubits,” Physical
review letters, vol. 103, no. 11, p. 110501, 2009.

[19] J. M. Gambetta, F. Motzoi, S. Merkel, and F. K. Wilhelm, “Analytic
control methods for high-fidelity unitary operations in a weakly non-
linear oscillator,” Physical Review A, vol. 83, no. 1, p. 012308, 2011.

197

[20] F. Motzoi and F. K. Wilhelm, “Improving frequency selection of driven
pulses using derivative-based transition suppression,” Physical Review
A, vol. 88, no. 6, p. 062318, 2013.

[21] B. Jones and M. Vyushkova, “Quantum computers flip the
script on spin chemistry.” https://www.ibm.com/blogs/research/2020/
02/quantum-spin-chemistry/, 2020.

[22] F. B. Maciejewski, Z. Zimborás, and M. Oszmaniec, “Mitiga-
tion of readout noise in near-term quantum devices by classi-
cal post-processing based on detector tomography,” arXiv preprint
arXiv:1907.08518, 2019.

[23] Y. Chen, M. Farahzad, S. Yoo, and T.-C. Wei, “Detector tomography
on ibm 5-qubit quantum computers and mitigation of imperfect mea-
surement,” arXiv preprint arXiv:1904.11935, 2019.

[24] A. Asfaw, T. Alexander, P. Nation, and J. Gambetta, “Get to the heart
of real quantum hardware.” https://www.ibm.com/blogs/research/2019/
12/qiskit-openpulse/, 2019.

[25] H. Abraham, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander,
G. Alexandrowics, E. Arbel, A. Asfaw, C. Azaustre, P. Barkoutsos,
G. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, L. S. Bishop, S. Bosch,
D. Bucher, CZ, F. Cabrera, P. Calpin, L. Capelluto, J. Carballo,
G. Carrascal, A. Chen, C.-F. Chen, R. Chen, J. M. Chow, C. Claus,
C. Clauss, A. J. Cross, A. W. Cross, J. Cruz-Benito, Cryoris, C. Culver,
A. D. Córcoles-Gonzales, S. Dague, M. Dartiailh, A. R. Davila,
D. Ding, E. Dumitrescu, K. Dumon, I. Duran, P. Eendebak, D. Egger,
M. Everitt, P. M. Fernández, A. Frisch, A. Fuhrer, I. GOULD, J. Gacon,
Gadi, B. G. Gago, J. M. Gambetta, L. Garcia, S. Garion, Gawel-
Kus, J. Gomez-Mosquera, S. de la Puente González, D. Greenberg,
J. A. Gunnels, I. Haide, I. Hamamura, V. Havlicek, J. Hellmers,
Ł. Herok, H. Horii, C. Howington, S. Hu, W. Hu, H. Imai, T. Imamichi,
R. Iten, T. Itoko, A. Javadi-Abhari, Jessica, K. Johns, N. Kanazawa,
A. Karazeev, P. Kassebaum, A. Kovyrshin, V. Krishnan, K. Krsulich,
G. Kus, R. LaRose, R. Lambert, J. Latone, S. Lawrence, D. Liu, P. Liu,
P. B. Z. Mac, Y. Maeng, A. Malyshev, J. Marecek, M. Marques,
D. Mathews, A. Matsuo, D. T. McClure, C. McGarry, D. McKay,
S. Meesala, A. Mezzacapo, R. Midha, Z. Minev, M. D. Mooring,
R. Morales, N. Moran, P. Murali, J. Müggenburg, D. Nadlinger, G. Nan-
nicini, P. Nation, Y. Naveh, Nick-Singstock, P. Niroula, H. Norlen,
L. J. O’Riordan, P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Perriello,
A. Phan, M. Pistoia, A. Pozas-iKerstjens, V. Prutyanov, J. Pérez,
Quintiii, R. Raymond, R. M.-C. Redondo, M. Reuter, D. M. Rodrı́guez,
M. Ryu, M. Sandberg, N. Sathaye, B. Schmitt, C. Schnabel, T. L.
Scholten, E. Schoute, I. F. Sertage, N. Shammah, Y. Shi, A. Silva,
Y. Siraichi, S. Sivarajah, J. A. Smolin, M. Soeken, D. Steenken,
M. Stypulkoski, H. Takahashi, C. Taylor, P. Taylour, S. Thomas,
M. Tillet, M. Tod, E. de la Torre, K. Trabing, M. Treinish, TrishaPe,
W. Turner, Y. Vaknin, C. R. Valcarce, F. Varchon, D. Vogt-Lee,
C. Vuillot, J. Weaver, R. Wieczorek, J. A. Wildstrom, R. Wille,
E. Winston, J. J. Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood,
S. Wood, J. Wootton, D. Yeralin, J. Yu, L. Zdanski, Zoufalc, ane-
dumla, azulehner, bcamorrison, brandhsn, dennis-liu 1, drholmie, el-
frocampeador, fanizzamarco, gruu, kanejess, klinvill, lerongil, ma5x,
merav aharoni, mrossinek, ordmoj, strickroman, tigerjack, yang.luh,
and yotamvakninibm, “Qiskit: An open-source framework for quantum
computing,” 2019.

[26] “Cirq: A python framework for creating, editing, and invoking
noisy intermediate scale quantum (NISQ) circuits.” https://github.com/
quantumlib/Cirq, 2018.

[27] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum
instruction set architecture,” arXiv preprint arXiv:1608.03355, 2016.

[28] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati,
C.-F. Chiang, S. Vanderwilt, J. Black, and F. Chong, “Scaffold:
Quantum programming language,” tech. rep., Princeton University
Department of Computer Science, 2012.

[29] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “Scaffcc: a framework for compilation and analysis
of quantum computing programs,” in Proceedings of the 11th ACM
Conference on Computing Frontiers, p. 1, ACM, 2014.

[30] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Val-
iron, “Quipper: a scalable quantum programming language,” in ACM
SIGPLAN Notices, vol. 48, pp. 333–342, ACM, 2013.

[31] K. M. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, “Q#: En-
abling scalable quantum computing and development with a high-level
domain-specific language,” arXiv preprint arXiv:1803.00652, 2018.

[32] A. Sørensen and K. Mølmer, “Entanglement and quantum computation
with ions in thermal motion,” Physical Review A, vol. 62, no. 2,
p. 022311, 2000.

[33] D. Maslov and Y. Nam, “Use of global interactions in efficient
quantum circuit constructions,” New Journal of Physics, vol. 20, no. 3,
p. 033018, 2018.

[34] N. Khammassi, G. Guerreschi, I. Ashraf, J. Hogaboam, C. Almudever,
and K. Bertels, “cqasm v1. 0: Towards a common quantum assembly
language,” arXiv preprint arXiv:1805.09607, 2018.

[35] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weed-
brook, “Strawberry fields: A software platform for photonic quantum
computing,” Quantum, vol. 3, p. 129, 2019.

[36] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta,
“Efficient z gates for quantum computing,” Physical Review A, vol. 96,
no. 2, p. 022330, 2017.

[37] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,”
Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.

[38] N. Khaneja and S. J. Glaser, “Cartan decomposition of su (2n) and
control of spin systems,” Chemical Physics, vol. 267, no. 1-3, pp. 11–
23, 2001.

[39] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M.
Gambetta, “Validating quantum computers using randomized model
circuits,” Physical Review A, vol. 100, no. 3, p. 032328, 2019.

[40] G. Paraoanu, “Microwave-induced coupling of superconducting
qubits,” Physical Review B, vol. 74, no. 14, p. 140504, 2006.

[41] C. Rigetti and M. Devoret, “Fully microwave-tunable universal gates
in superconducting qubits with linear couplings and fixed transition
frequencies,” Physical Review B, vol. 81, no. 13, p. 134507, 2010.

[42] J. M. Chow, A. Córcoles, J. M. Gambetta, C. Rigetti, B. Johnson, J. A.
Smolin, J. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, et al.,
“Simple all-microwave entangling gate for fixed-frequency supercon-
ducting qubits,” Physical review letters, vol. 107, no. 8, p. 080502,
2011.

[43] S. Poletto, J. M. Gambetta, S. T. Merkel, J. A. Smolin, J. M. Chow,
A. Córcoles, G. A. Keefe, M. B. Rothwell, J. Rozen, D. Abraham, et al.,
“Entanglement of two superconducting qubits in a waveguide cavity
via monochromatic two-photon excitation,” Physical review letters,
vol. 109, no. 24, p. 240505, 2012.

[44] J. M. Chow, J. M. Gambetta, A. W. Cross, S. T. Merkel, C. Rigetti, and
M. Steffen, “Microwave-activated conditional-phase gate for supercon-
ducting qubits,” New Journal of Physics, vol. 15, no. 11, p. 115012,
2013.

[45] J. M. Chow, Quantum information processing with superconducting
qubits. Yale University, 2010.

[46] F. W. Strauch, P. R. Johnson, A. J. Dragt, C. Lobb, J. Anderson, and
F. Wellstood, “Quantum logic gates for coupled superconducting phase
qubits,” Physical review letters, vol. 91, no. 16, p. 167005, 2003.

[47] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R.
Johnson, D. Schuster, J. Majer, A. Blais, L. Frunzio, S. Girvin,
et al., “Demonstration of two-qubit algorithms with a superconducting
quantum processor,” Nature, vol. 460, no. 7252, p. 240, 2009.

[48] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum
dots,” Physical Review A, vol. 57, no. 1, p. 120, 1998.

[49] D. Mozyrsky, V. Privman, and M. L. Glasser, “Indirect interaction of
solid-state qubits via two-dimensional electron gas,” Physical review
letters, vol. 86, no. 22, p. 5112, 2001.

[50] P. Echternach, C. P. Williams, S. Dultz, P. Delsing, S. Braunstein, and
J. Dowling, “Universal quantum gates for single cooper pair box based
quantum computing,” arXiv preprint quant-ph/0112025, 2001.

[51] A. Lebedev, G. Lesovik, V. Vinokur, and G. Blatter, “Extended quantum
maxwell demon acting over macroscopic distances,” Physical Review
B, vol. 98, no. 21, p. 214502, 2018.

[52] M. J. Powell, “A view of algorithms for optimization without deriva-
tives,” Mathematics Today-Bulletin of the Institute of Mathematics and
its Applications, vol. 43, no. 5, pp. 170–174, 2007.

[53] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimr-
man, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, “SciPy

198

1.0–Fundamental Algorithms for Scientific Computing in Python,”
arXiv e-prints, p. arXiv:1907.10121, Jul 2019.

[54] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen,
P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush, et al., “Quantum
chemistry calculations on a trapped-ion quantum simulator,” Physical
Review X, vol. 8, no. 3, p. 031022, 2018.

[55] M. Müller, K. Hammerer, Y. Zhou, C. F. Roos, and P. Zoller, “Simulat-
ing open quantum systems: from many-body interactions to stabilizer
pumping,” New Journal of Physics, vol. 13, no. 8, p. 085007, 2011.

[56] Y. Nam, J.-S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov,
K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf, et al., “Ground-state
energy estimation of the water molecule on a trapped ion quantum
computer,” arXiv preprint arXiv:1902.10171, 2019.

[57] A. Javadi-Abhari, P. Nation, and J. Gambetta, “Qiskit – write once, tar-
get multiple architectures.” https://www.ibm.com/blogs/research/2019/
11/qiskit-for-multiple-architectures/, 2019.

[58] T. Nguyen and A. McCaskey, “Enabling pulse-level programming,
compilation, and execution in xacc,” arXiv preprint arXiv:2003.11971,
2020.

[59] A. J. McCaskey, D. Lyakh, E. Dumitrescu, S. Powers, and T. S.
Humble, “Xacc: a system-level software infrastructure for heteroge-
neous quantum-classical computing,” Quantum Science and Technol-
ogy, 2020.

[60] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann,
and F. T. Chong, “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 1031–1044, ACM, 2019.

[61] J. Werschnik and E. Gross, “Quantum optimal control theory,” Journal
of Physics B: Atomic, Molecular and Optical Physics, vol. 40, no. 18,
p. R175, 2007.

[62] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, “Implementing optimal control pulse
shaping for improved single-qubit gates,” 2010.

[63] J. Cheng, H. Deng, and X. Qian, “Accqoc: Accelerating quantum
optimal control based pulse generation,” in Proceedings of the 47th
International Symposium on Computer Architecture, 2020.

[64] P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi, D. I.
Schuster, H. Hoffmann, and F. T. Chong, “Partial compilation of vari-
ational algorithms for noisy intermediate-scale quantum machines,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 266–278, ACM, 2019.

[65] N. Leung, M. Abdelhafez, J. Koch, and D. Schuster, “Speedup for
quantum optimal control from automatic differentiation based on
graphics processing units,” Physical Review A, vol. 95, no. 4, p. 042318,
2017.

[66] Z. Leng, P. Mundada, S. Ghadimi, and A. Houck, “Robust and efficient
algorithms for high-dimensional black-box quantum optimization,”
arXiv preprint arXiv:1910.03591, 2019.

[67] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta, “Procedure
for systematically tuning up cross-talk in the cross-resonance gate,”
Physical Review A, vol. 93, no. 6, p. 060302, 2016.

[68] A. D. Córcoles, J. M. Gambetta, J. M. Chow, J. A. Smolin, M. Ware,
J. Strand, B. L. Plourde, and M. Steffen, “Process verification of two-
qubit quantum gates by randomized benchmarking,” Physical Review
A, vol. 87, no. 3, p. 030301, 2013.

[69] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler,
A. Fowler, and H. Neven, “Encoding electronic spectra in quantum
circuits with linear t complexity,” Physical Review X, vol. 8, no. 4,
p. 041015, 2018.

[70] E. Magesan and J. M. Gambetta, “Effective hamiltonian models of the
cross-resonance gate,” arXiv preprint arXiv:1804.04073, 2018.

[71] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R. Brown,
and F. T. Chong, “Asymptotic improvements to quantum circuits via
qutrits,” arXiv preprint arXiv:1905.10481, 2019.

[72] M. J. Peterer, S. J. Bader, X. Jin, F. Yan, A. Kamal, T. J. Gudmundsen,
P. J. Leek, T. P. Orlando, W. D. Oliver, and S. Gustavsson, “Coherence
and decay of higher energy levels of a superconducting transmon
qubit,” Physical review letters, vol. 114, no. 1, p. 010501, 2015.

[73] H. Ribeiro and A. A. Clerk, “Accelerated adiabatic quantum gates:
optimizing speed versus robustness,” arXiv preprint arXiv:1906.06737,
2019.

[74] N. Earnest, S. Chakram, Y. Lu, N. Irons, R. K. Naik, N. Leung,
L. Ocola, D. A. Czaplewski, B. Baker, J. Lawrence, et al., “Real-

ization of a λ system with metastable states of a capacitively shunted
fluxonium,” Physical review letters, vol. 120, no. 15, p. 150504, 2018.

[75] A. Pavlidis and E. Floratos, “Arithmetic circuits for multilevel qudits
based on quantum fourier transform,” arXiv preprint arXiv:1707.08834,
2017.

[76] Y. Fan, “Applications of multi-valued quantum algorithms,” arXiv
preprint arXiv:0809.0932, 2008.

[77] H. Li, C. Wu, W. Liu, P. Chen, and C. Li, “Fast quantum search
algorithm for databases of arbitrary size and its implementation in a
cavity qed system,” Physics Letters A, vol. 375, no. 48, pp. 4249–4254,
2011.

[78] Y. Wang and M. Perkowski, “Improved complexity of quantum oracles
for ternary grover algorithm for graph coloring,” in 2011 41st IEEE In-
ternational Symposium on Multiple-Valued Logic, pp. 294–301, IEEE,
2011.

[79] S. Ivanov, H. Tonchev, and N. Vitanov, “Time-efficient implementation
of quantum search with qudits,” Physical Review A, vol. 85, no. 6,
p. 062321, 2012.

[80] A. Bocharov, M. Roetteler, and K. M. Svore, “Factoring with qutrits:
Shor’s algorithm on ternary and metaplectic quantum architectures,”
Physical Review A, vol. 96, no. 1, p. 012306, 2017.

[81] S. McArdle, X. Yuan, and S. Benjamin, “Error-mitigated digital quan-
tum simulation,” Physical review letters, vol. 122, no. 18, p. 180501,
2019.

[82] S. Rosenblum, P. Reinhold, M. Mirrahimi, L. Jiang, L. Frunzio, and
R. Schoelkopf, “Fault-tolerant detection of a quantum error,” Science,
vol. 361, no. 6399, pp. 266–270, 2018.

[83] Z. Gedik, I. A. Silva, B. Çakmak, G. Karpat, E. L. G. Vidoto, D. d. O.
Soares-Pinto, E. Deazevedo, and F. F. Fanchini, “Computational speed-
up with a single qudit,” Scientific reports, vol. 5, p. 14671, 2015.

[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[85] C. Kabytayev, T. J. Green, K. Khodjasteh, M. J. Biercuk, L. Viola,
and K. R. Brown, “Robustness of composite pulses to time-dependent
control noise,” Physical Review A, vol. 90, no. 1, p. 012316, 2014.

[86] C. Edmunds, C. Hempel, R. Harris, V. Frey, T. Stace, and M. Biercuk,
“Dynamically corrected gates suppress spatio-temporal error corre-
lations as measured by randomized benchmarking,” arXiv preprint
arXiv:1909.10727, 2019.

[87] T. Walter, P. Kurpiers, S. Gasparinetti, P. Magnard, A. Potočnik,
Y. Salathé, M. Pechal, M. Mondal, M. Oppliger, C. Eichler, et al.,
“Rapid high-fidelity single-shot dispersive readout of superconducting
qubits,” Physical Review Applied, vol. 7, no. 5, p. 054020, 2017.

[88] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen,
and C. H. Alderete, “Full-stack, real-system quantum computer stud-
ies: Architectural comparisons and design insights,” arXiv preprint
arXiv:1905.11349, 2019.

[89] P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A case for multi-
programming quantum computers,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 291–
303, ACM, 2019.

[90] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.
Landsman, K. Wright, and C. Monroe, “Experimental comparison of
two quantum computing architectures,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3305–3310, 2017.

[91] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[92] A. M. Childs and W. van Dam, “Quantum algorithm for a generalized
hidden shift problem,” in Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 1225–1232, Society for
Industrial and Applied Mathematics, 2007.

[93] D. Coppersmith, “An approximate fourier transform useful in quantum
factoring,” arXiv preprint quant-ph/0201067, 2002.

[94] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature communications,
vol. 5, p. 4213, 2014.

[95] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An
adaptive variational algorithm for exact molecular simulations on a
quantum computer,” Nature communications, vol. 10, no. 1, pp. 1–9,
2019.

199

[96] M. Otten, C. L. Cortes, and S. K. Gray, “Noise-resilient quan-
tum dynamics using symmetry-preserving ansatzes,” arXiv preprint
arXiv:1910.06284, 2019.

[97] S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Im-
proving reliability of quantum computers by orchestrating dissimilar
mistakes,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 253–265, ACM, 2019.

[98] S. S. Tannu and M. K. Qureshi, “Mitigating measurement errors in
quantum computers by exploiting state-dependent bias,” in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 279–290, ACM, 2019.

[99] P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean,
R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, et al., “Scalable
quantum simulation of molecular energies,” Physical Review X, vol. 6,
no. 3, p. 031007, 2016.

[100] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love,
and A. Aspuru-Guzik, “Strategies for quantum computing molecular
energies using the unitary coupled cluster ansatz,” Quantum Science
and Technology, vol. 4, no. 1, p. 014008, 2018.

[101] J. R. McClean, K. J. Sung, I. D. Kivlichan, Y. Cao, C. Dai, E. S. Fried,
C. Gidney, B. Gimby, P. Gokhale, T. Häner, et al., “Openfermion: the
electronic structure package for quantum computers,” arXiv preprint
arXiv:1710.07629, 2017.

[102] D. M. Abrams, N. Didier, B. R. Johnson, M. P. da Silva, and C. A.
Ryan, “Implementation of the xy interaction family with calibration of
a single pulse,” arXiv preprint arXiv:1912.04424, 2019.

[103] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D.
Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized
benchmarking of quantum gates,” Physical Review A, vol. 77, no. 1,
p. 012307, 2008.

200

