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Perspectives on Scaling

• C-FAR: Center for Future Architectures Research
• Focused on scaling in 2020-2030 silicon

• Performance, power and cost

• 27 faculty at 14 universities, 92 students

• Why is C-FAR’s mission important?
• The promise… tomorrow’s applications need powerful systems

• Why is C-FAR’s mission challenging? 
• The threats… slowing innovation and degrading silicon
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Computer Vision Machine Learning Big Data AnalyticsEnd of Dennard ScalingMany Idle Cores Silicon Defects

All of the work presented in this talk
is that of C-FAR faculty.



Moore’s Law Performance Gap
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Today, gap is
cresting 10x

Lack of perceived
value

Dark silicon

Diminished ILP
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10nm slips
by 5-6 quarters

14nm slips
by 2 quarters

7nm by 
end 2020?

Is Density Still Scaling?

Street Dates for Intel’s Lead Generation Products

Courtesy David Brooks @ Harvard

4



But, the technology scaling component has left us.

What Does This All Mean to 
Architects?
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Today, value = scalability (performance, power, cost).



Remedy #1: Chip Multiprocessors
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CMP Performance Scaling for the 
Highly Parallel PARSEC Benchmarks
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From “Dark Silicon and the End of Multicore Scaling,” by Esmaeilzadeh et al.



What Does the Press Think?
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We Investigate: Who’s to Blame?
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?Programmers



Largest NA Bitcoin Miner

• GPGPU-based system

• Fills 2000 sq.ft. warehouse

• Computes 1 petahash/s

• Reportedly generates $8M 
in Bitcoins per month

• Unfortunately soon to be 
obsolete as Bitcoin difficulty 
continues to scale
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We Investigate: Who’s to Blame?
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?Programmers

Educators



CS Education is Booming

• CS enrollment on a fast-rising trajectory for a decade

• Parallel programming at UM
• EECS 381, Object-Oriented and Advanced Programming

• EECS 482, Operating Systems

• EECS 570, Parallel Computer Architecture

• EECS 587, Parallel Computing

• EECS 591, Distributed Systems

• EECS 598, Ubiquitous Parallelism

• I have been teaching and
developing CS in Ethiopia
• Nearly 600 students in the

CS program

• 2nd most popular major in the
university
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CS 

EE

CE

UM EECS Enrollment



We Investigate: Who’s to Blame?
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?Programmers

Educators The Transistor



The Dark Silicon Dilemma
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Courtesy Michael Taylor @ UCSD



The Dark Silicon Dilemma
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Courtesy Michael Taylor @ UCSD



The Dark Silicon Dilemma
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Courtesy Michael Taylor @ UCSD



We Investigate: Who’s to Blame?
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?Programmers

Educators

Architects

The Transistor



The Tyranny of Amdahl’s Law
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Where we 
need to be 
today! (10x)



We Investigate: Who’s to Blame?
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?Programmers

Educators

Architects

The Transistor

What is the solution?



A Story about
Jason and His Two Advisors
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EVA: Embedded Vision Architecture
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Application-specific
Functional Units

Heterogeneous 
Multicore

EVA Functional Units
Monopoly Compare, 
Dot Product Unit, 
Vector Max, 
Decision Tree Compare

Initial EVA design:
90x greater efficiency for 
computer vision algorithms

Customized
Memory
System



Where We Need to Focus
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Parallelism Customization

Heterogeneous parallel systems 
overcome dark silicon and the tyranny of Amdahl’s Law.



Why These Ideas Will Likely Fail, 
Unless We Make a Change…

• The Good: Hetero-parallel systems 
can close the Moore’s Law gap

• The Bad: Dennard scaling has 
stopped, Moore’s Law is slowing, 
leaving a growing gap

• The Ugly: Hetero-parallel designs 
needed to close the gap will be too 
expensive to afford
• We must make design much cheaper!
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What I Want You to Remember

• Successfully bridging the Moore’s Law performance gap is 
less about “How” to do it and more about “How Much” does 
it cost!

• My claim: if we can effect a 100x reduction in the cost to 
bring a design to market, innovation will flourish and 
scaling challenges will be overcome.
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Design Costs Are Skyrocketing
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Source: International Business Strategies
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$88M

$120M

$500K



Outcome: “Nanodiversity” is Dwindling

Source: Gartner Group
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Inexpensive “Design” Promotes 
Innovation and Adaptation

• Don’t Believe Me? Ask Mother Nature!
• r/K selection theory is a biological mechanism 

that organisms use to better adapt to their 
environment

• In unstable environments, r-selection
predominates as the ability 
to reproduce quickly is crucial

• In stable environments, K-selection
predominates as the ability 
to compete successfully for limited 
resources is crucial
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The Remedy: Scale Innovation

• Ultimate goal: accelerate system architecture innovation 
and make it sufficiently inexpensive that anyone can do it 
anywhere

• Approach #1: Expect more from architectural innovation

• Approach #2: Reduce the cost to design custom hardware

• Approach #3: Embrace open-source concepts

• Approach #4: Widen the applicability of custom hardware

• Approach #5: Reduce the cost of manufacturing custom H/W
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1) Expect more from architectural 
innovation
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“Give me 15% 
speedup and I’ll 

accept your paper”

“I need 1% 
speedup for 1% 

area”

“Your idea needs to deliver 
2x or more, or someone 

else should fund it”



HELIX-UP Unleashed Parallelization

• Traditional parallelizing 
compilers must honor 
possible dependencies

• HELIX-UP manufactures 
parallelism by profiling 
which deps do not exist 
and which are not needed
• Based on user supplied output 

distortion function

• Big step for parallelization
• 2x speedup over parallelizing 

compilers, 6x over serial, < 7% 
distortion

Thread 0
Thread 1
Thread 2
Thread 3

Data

Data

Data

Iteration 0

Iteration 1

David Brooks @ Harvard

Nehalem 6 cores, 2 threads per core
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Association Rule Mining with the 
Automata Processor

• Micron’s Automata processor
• Implements FSMs at memory

• Massively parallel with accelerators

• Mapped data-mining ARM rules 
to memory-based FSMs
• ARM algorithms identify relationships 

between data elements

• Implementations are often memory 
bottlenecked

• Big-data sets had big speedups
• 90x+ over single CPU performance

• 2-9x+ speedups over CMPs and GPUs

• Joint effort with UVA and Micron

31

Kevin Skadron @ UVA



2) Reduce the cost to design 
custom hardware

• Better tools and infrastructure
• Scalable accelerator synthesis and compilation, generate code and H/W for 

highly reusable accelerators

• Composable design space exploration, enables efficient exploration of 
highly complex design spaces

• Well put-together benchmark suites to drive development efforts
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Shared Memory/Interconnect
Models

Unmodified
C-Code

Accelerator Design
Parameters

(e.g., # FU, mem. BW)

Private L1/
Scratchpad

Accelerator
Specific

Datapath

David Brooks
@ Harvard



Feature
Tracking

Disparity
Map

Image 
Stitch

Image
Segmentation

Robot
Localization

Texture
Synthesis

SIFT

Support 
Vector

Machines

CortexSuite:
A Synthetic Brain Benchmark Suite

Michael Taylor @ UCSD
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• Thought experiment: let’s design the next great 
smartphone

3) Embrace Open-Source Concepts
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Red = non-free IP, Green = free IP



3) Embrace Open-Source Concepts
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As a community, we need to consider:
How much of our basic technology

should be free?

Red = non-free IP, Green = free IP



Open-Source H/W is Growing
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4) Widen the Applicability of 
Customized H/W
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• ESP: Ensembles of Specialized Processors

• Ensembles are algorithmic-specific processors optimized for code “patterns”

• Approach uses composable customization to deliver speed and efficiency 
that is widely applicable to general purpose programs

• Grand challenges remain: what are the components and how are they 
connected?

ILP 
Engine

Dense 
Engine

Sparse 
Engine

Graph 
Engine

ESP 
Core

Glue 
Code

Dense 
Code

Sparse
Code

Graph 
Code

ESP 
Code

Dense GraphSparse …

Applications
Multimedia 

Analysis
Computer 

Vision

Machine 
Learning

Computational Patterns

Specializers with custom implementations and autotuning

Krste Asanovic @ UC-Berkeley



• Brick-and-mortar silicon explores assembly-time 
customization, i.e., MCMs + 3D + FPGA interconnect

• Diversity via brick ecosystem & interconnect flexibility

• Brick design costs amortized across all designs

• Robust interconnect and custom bricks rival ASIC speeds

• Another thought experiment: what if building a house
were like fabricating a chip?

5) Reduce the cost of manufacturing 
customized H/W

H/W brick
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Martha Kim @ Columbia

Brick-and-mortar silicon
design flow:
1) Assemble brick layer
2) Connect with mortar layer
3) Package assembly
4) Deploy software



Conclusions

• Heterogeneous design could continue 
Moore’s law perf. scaling via innovation alone
• But, it requires a diverse hardware ecosystem with 

affordable customization

• Effective and affordable customization won’t 
happen without our help
1. Expect more from architectural innovation

2. Reduce the cost to design customized design

3. Embrace open-source concepts

4. Widen the applicability of customization

5. Reduce the cost of custom manufacturing

• Increasing “nanodiversity” is a good thing

• More jobs, companies, and students

• More competition and scalable innovation
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