
Efficiently	Enforcing	Strong	
Memory	Ordering	in	GPUs

Abhayendra	Singh*,	Shaizeen	Aga,	Satish	Narayanasamy
Google, University	of	Michigan,	Ann	Arbor

Dec	9,	2015

University	 of	Michigan
Electrical	Engineering		and	Computer	 Science

*author	performed	the	work	at	the	University	of	Michigan,	Ann	Arbor

Increasing	communication	between	threads
in	GPGPU	applications

More	irregular	applications	run	on	GPUs
data-dependent,
higher	communication

TreeBuildingkernel	in	barneshut
(Burtscher et	al.,	IISWC’12)

Heterogeneous	systems	will	have	more	
fine-grained	communication
Fine-grain	communication	between	
CPU	and	GPU

Unified	virtual	memory
Cache	coherence	[Power	et	al.,	MICRO’13]

CPU GPU

Other	
AcceleratorMemory

Heterogeneous	systems	will	have	more	
fine-grained	communication
Fine-grain	communication	between	
CPU	and	GPU

Unified	virtual	memory
Cache	coherence	[Power	et	al.,	MICRO’13]

OpenCL supports	fine-grain	sharing

More	irregularity	in	applications

CPU GPU

Other	
AcceleratorMemory

Memory	Consistency	Model

Defines	rules	that	a	programmer	can	use	to	reason	about	a	parallel	execution

Memory	Consistency	Model

Defines	rules	that	a	programmer	can	use	to	reason	about	a	parallel	execution

Sequential	Consistency	(SC)
“program-order”

ptr = NULL; done = false

Producer Consumer
a: ptr = alloc() c: if (done)
b: done = true d: r1 = ptr->x

Memory	Consistency	Model

Defines	rules	that	a	programmer	can	use	to	reason	about	a	parallel	execution

Sequential	Consistency	(SC)
“program-order”	+
“atomic	memory”

ptr = NULL; done = false

Producer Consumer
a: ptr = alloc() c: if (done)
b: done = true d: r1 = ptr->x

Data-race-free-0	(DRF-0)	Memory	Model

C++,	Java
OpenCL,	CUDA

Heterogeneous-race-free	(HRF)	(Hower et	al.,	ASPLOS’14)

Data-race-free-0	(DRF-0)	Memory	Model

C++,	Java
OpenCL,	CUDA

Heterogeneous-race-free	(HRF)	(Hower et	al.,	ASPLOS’14)

SC	if	data-race-free
Programmers	annotate	synchronization	variables

ptr = NULL; atomic done = false

Producer Consumer
a: ptr = alloc() c: if (done)
b: done = true d: r1 = ptr->x

Data-race-free-0	(DRF-0)	Memory	Model

C++,	Java
OpenCL,	CUDA

Heterogeneous-race-free	(HRF)	(Hower et	al.,	ASPLOS’14)

SC	if	data-race-free
Programmers	annotate	synchronization	variables
Compiler	and	runtime	guarantee	total	order	on	synchronization	operations

ptr = NULL; atomic done = false

Producer Consumer
a: ptr = alloc() c: if (done)
b: done = true d: r1 = ptr->x

Data-race-free-0	(DRF-0)	Memory	Model

C++,	Java
OpenCL,	CUDA

Heterogeneous-race-free	(HRF)	(Hower et	al.,	ASPLOS’14)

SC	if	data-race-free
Programmers	annotate	synchronization	variables
Compiler	and	runtime	guarantee	total	order	on	synchronization	operations

ptr = NULL; done = false

Producer Consumer
a: ptr = alloc() c: if (done)
b: done = true d: r1 = ptr->x

reordering	could	lead	
to	ptr being	NULL

Data-race-free-0	(DRF-0)	Memory	Model

C++,	Java
OpenCL,	CUDA

Heterogeneous-race-free	(HRF)	(Hower et	al.,	ASPLOS’14)

SC	if	data-race-free
Programmers	annotate	synchronization	variables
Compiler	and	runtime	guarantee	total	order	on	synchronization	operations

Undefined	semantics	for	programs	with	a	data-race

Documented	data-races	in	GPGPU	programs

Other	data-races:
N-body	simulation	[Betts	et	al.,	OOPSLA	2012]
RadixSort [Li	et	al.,	PPoPP 2012]	
Efficient	Synchronization	Primitives	for	GPUs	[Tyler	Sorensen,	MS	thesis,	2014]

Image	source:	[Alglave et	al.,	ASPLOS	2015]

Bug:	a	data-race	in	code	for
dynamic	load	balancing	
[Tyler	Sorensen,	MS	thesis,	2014]

Is	there	a	motivation	for	DRF-0	over	SC?

Performance	of	DRF-0	better	than	SC?	
Very	little	for	CPUs

IEEE	Computer’98,	PACT’02,	ISCA’12

Is	there	a	performance	justification	for	DRF-0	(or	TSO)		over	SC	in	GPUs?

Goals

Identify	sources	of	SC	violation	in	GPUs

Understand	overhead	of	various	memory	ordering	constraints	in	GPUs
DRF-0,	TSO,	SC

Bridge	the	gap	between	SC	and	DRF-0
Access-type	aware	GPU	architecture

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

But,	can	complete	out-of-order
– Caching	at	L1
– Reordering	in	interconnect
– Partitioned	address	space

producer consumer

ptr = alloc() if (done)

done = true r1 = ptr->x

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

But,	can	complete	out-of-order
– Caching	at	L1
– Reordering	in	interconnect
– Partitioned	address	space

1

2

3

4

producer consumer

ptr = alloc() if (done)

done = true r1 = ptr->x

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

But,	can	complete	out-of-order
– Caching	at	L1
– Reordering	in	interconnect
– Partitioned	address	space

1

2

3

4

cache	miss
cache	hit

producer consumer

ptr = alloc() if (done)

done = true r1 = ptr->x

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

But,	can	complete	out-of-order
– Caching	at	L1
– Reordering	in	interconnect
– Partitioned	address	space

1

2

3

4

cache	miss
cache	hit

producer consumer

ptr = alloc() if (done)

done = true r1 = ptr->x

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

But,	can	complete	out-of-order
– Caching	at	L1
– Reordering	in	interconnect
– Partitioned	address	space

1

2

3

4

cache	miss
cache	hit

producer consumer

ptr = alloc() if (done)

done = true r1 = ptr->x

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

But,	can	complete	out-of-order
– Caching	at	L1
– Reordering	in	interconnect
– Partitioned	address	space

1

2

3

4

cache	miss
cache	hit

producer consumer

ptr = alloc() if (done)

done = true r1 = ptr->x

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

But,	can	complete	out-of-order
– Caching	at	L1
– Reordering	in	interconnect
– Partitioned	address	space

⟹ Can	violate	SC

1

2

3

4

cache	miss
cache	hit

SC	violation

Roadmap

Identify	sources	of	SC	violation

Understand	overhead	of	various	memory	ordering	constraints	in	GPUs
DRF-0,	TSO,	SC

Bridge	the	gap	between	SC	and	DRF-0
Access-type	aware	GPU	architecture

Fences	for	various	memory	models

DRF-0
fences	only	for	synchronization

SC
any	shared or	global access	behaves	like	a	fence

Naïvely	Enforcing	Fence	Constraints

Delay	a	warp	till	non-local	memory	accesses	preceding	a	fence	are	complete

Fence

Shared	memory	access

Global	memory	access

Naïvely	Enforcing	Fence	Constraints

Delay	a	warp	till	non-local	memory	accesses	preceding	a	fence	are	complete

GPU	extension:
Two	counters	per	warp	track	its	pending	global loads	and	stores	
No	need	to	track	pending	shared memory	accesses warp

id
pending	loads pending	stores

w0 0 1

… … …
… … …

Fence

Shared	memory	access

Global	memory	access

Experimental	Methodology

Simulator:	GPGPU-sim v3.2.1
– extended	with	Ruby	memory	hierarchy
– 16	SMs,	crossbar	interconnect

L1	Cache	Coherence	protocol
– MESI	for	write-back	
– Valid/Invalid	for	write-through

Benchmarks
– applications	from	Rodinia,	Polybench benchmark	suite
– Applications	used	in	GPU	coherence	[Singh	et	al.,	HPCA’13]

18	out	of	22	applications	incur
insignificant	SC	overhead

0

0.5

1

DRF-0 SC

Avg.	execution	time	
normalized	DRF-0

Warp-level-parallelism	(WLP)	masks
SC	overhead

Warp-0

Cache	miss Cache	Hit

Warp-level-parallelism	(WLP)	masks
SC	overhead

Warp-0

Cache	miss Cache	Hit

Warp-level-parallelism	(WLP)	masks
SC	overhead

Warp-0 w2w1 w3

SC	can	exploit	inter-warp	MLP

Cache	miss Cache	Hit

Warp-level-parallelism	(WLP)	masks
SC	overhead

Warp-0 w2w1 w3

SC	can	exploit	inter-warp	MLP

Adequate	WLP	=>	Low	SC	overhead

Cache	miss Cache	Hit

Warp-level-parallelism	(WLP)	masks
SC	overhead

0

1

2

3

8	thread
block/SM

1	thread
block/SM

DRF-0 SC

Execution	time	normalized	to	DRF-0
(benchmark:	guassian)

1.97 2.2

SC	can	exploit	inter-warp	MLP

Adequate	WLP	=>	Low	SC	overhead

Higher	SC	overhead	in	apps	
where	intra-warp	MLP	is	important

Warp-1 Warp-2

Need	for	intra-warp	MLP
App	has	fewer	warps	
Want	fewer	warps	to	avoid	cache	thrashing

Cache	miss Cache	Hit

Higher	SC	overhead	in	apps	
where	intra-warp	MLP	is	important

Warp-1 Warp-2

Need	for	intra-warp	MLP
App	has	fewer	warps	
Want	fewer	warps	to	avoid	cache	thrashing

Cache	miss Cache	Hit

Higher	SC	overhead	in	apps	
where	intra-warp	MLP	is	important

Warp-1 Warp-2

Need	for	intra-warp	MLP
App	has	fewer	warps	
Want	fewer	warps	to	avoid	cache	thrashing

In-order	execution	limits	the	ability	to	
exploit	intra-warp	MLP	in	DRF-0

Cache	miss Cache	Hit

Higher	SC	overhead	in	apps	
where	intra-warp	MLP	is	important

Warp-1 Warp-2

Need	for	intra-warp	MLP
App	has	fewer	warps	
Want	fewer	warps	to	avoid	cache	thrashing

In-order	execution	limits	the	ability	to	
exploit	intra-warp	MLP	in	DRF-0

Cache	miss Cache	Hit

Unlike	DRF-0,	SC	cannot	exploit	intra-warp	MLP

4	out	of	22	applications	exhibit
significant	SC	overhead

0

1

2

3

3mm fdtd-2d gemm gramschm

DRF-0 SC

Execution	time	
normalized	to	DRF-0

39

Reason:	Unlike	DRF-0,	SC	cannot	exploit	intra-warp	MLP

TSO	is	not	suitable	for	GPUs

0

1

2

3

3mm fdtd-2d gemm gramschm

Applications	with	significant	performance	
overhead

DRF-0 TSO SC

TSO	does	not	offer	much	performance	or	
programmability	advantage	over	SC

Execution	time	normalized	to	baseline	(DRF-0)

0

1

2

3

DRF-0 TSO SC

Applications	with	small	performance
overhead

Roadmap

How	GPU	optimizations	can	violate	memory	ordering	constraints?

Understand	overhead	of	various	memory	ordering	constraints	in	GPUs
DRF-0,	TSO,	SC

Bridge	the	gap	between	SC	and	DRF-0
Access-type	aware	GPU	architecture

Access-type	Aware	Optimization	for	GPU

Relax	ordering	constraint	for	safe	accesses
Accesses	to	thread-private	or	read-only	location	are	safe
(Shasha&	Snir,	TOPLAS’88,		Singh	et	al.,	ISCA’12)

Thread-level	classification	is	prohibitively	expensive
Classify	accesses	as	unsafe	or	SM-safe

Type-aware	SC	Extensions	to	Baseline	GPU

Frontend

Shared	memory

Coal-
escing

L2	m
odule	1

L2	m
odule	7

L1D

Interconnect
SM	1

1. Classify	memory	accesses

Type-aware	SC	Extensions	to	Baseline	GPU

Frontend

Shared	memory

Coal-
escing

M
AC	0

M
AC	7

L2	m
odule	1

L2	m
odule	7

L1D

Interconnect
SM	1

1. Classify	memory	accesses

Type-aware	SC	Extensions	to	Baseline	GPU

Frontend

Shared	memory

Coal-
escing

Type-
Cache

M
AC	0

M
AC	7

L2	m
odule	1

L2	m
odule	7

L1D

Interconnect
SM	1

1. Classify	memory	accesses

Type-aware	SC	Extensions	to	Baseline	GPU

Frontend

Shared	memory

Coal-
escing .

Type-
Cache

M
AC	0

M
AC	7

L2	m
odule	1

L2	m
odule	7

L1D

Interconnect
SM	1

Type-wait
Queue	(TQ)

.

1. Classify	memory	accesses

Unsafe	queue

Type-aware	SC	Extensions	to	Baseline	GPU

Frontend

Shared	memory

Coal-
escing .

Type-
Cache

M
AC	0

Memory	Ordering	
Buffer	(MoB)

Safe	queue

M
AC	7

L2	m
odule	1

L2	m
odule	7

L1D

Interconnect
SM	1

Type-wait
Queue	(TQ)

.
...

1. Classify	memory	accesses

2. Relax	ordering	constraints	
for	SM-safe	accesses

Type-aware	SC	Extensions	to	Baseline	GPU

1. Classify	memory	accesses

2. Relax	ordering	constraints	
for	SM-safe	accesses

Problem:	Ensuring	ordering	among	conflicting	
accesses	to	an	SM-safe	location	within	an	SM
ü See	details	in	the	paper

Unsafe	queueFrontend

Shared	memory

Coal-
escing .

Type-
Cache

M
AC	0

Memory	Ordering	
Buffer	(MoB)

Safe	queue

M
AC	7

L2	m
odule	1

L2	m
odule	7

L1D

Interconnect
SM	1

Type-wait
Queue	(TQ)

.
...

Type-aware	SC	incurs	only	small
performance	overhead

0

1

2

3

3mm fdtd-2d gemm gramschm

Applications	with	significant	performance	overhead

DRF-0 SC Type-aware	SC

Proposed	design	is	able	to	exploit	intra-warp	MLP	for	SM-safe	accesses

Future	research	directions

Build	SC-preserving	GPU	compiler

Overhead	SC-preserving	LLVM	compiler	for	C++:	~2%				[Marino	et	al.,	PLDI’11]

GPU	Compiler

GPU	hardware

Language	level	memory	model

✔
?

Conclusion

Quantified	performance	overhead	of	various	memory	models	in	GPUs

TSO	is	unattractive	for	GPUs:	No	performance	or	programmability	benefits	over	SC

Performance	gap	between	SC	and	DRF-0	is	insignificant	for	most	applications

Access	type	aware	optimization	bridges	the	gap	in	remaining	applications

Questions?

