Efficiently Enforcing Strong
Memory Ordering in GPUs

, Shaizeen Aga, Satish Narayanasamy

) University of Michigan, Ann Arbor
Dec9, 2015

§ 2

& g 8 University of Michigan
N

PRSTY
/8]

0
} Electrical Engineering and Computer Science
“e
:

*author performed the work at the University of Michigan, Ann Arbor

ncreasing communication between threads
in GPGPU applications

More irregular applications run on GPUs
data-dependent,
higher communication

TreeBuilding kernelin barneshut
(Burtscher et al., ISWC’12)

Heterogeneous systems will have more
fine-grained communication

Fine-grain communication between
CPU and GPU

Unified virtual memory

Cache coherence [Power et al., MICRO’13] < ! ! >

Heterogeneous systems will have more
fine-grained communication

Fine-grain communication between

CPU and GPU GPU
Unified virtual memory
Cache coherence [Power et al., MICRO’13] < @
$ $
OpenCL supports fine-grain sharing Other

Accelerator

More irregularity in applications

Memory Consistency Model

Defines rules that a programmer can use to reason about a parallel execution

Memory Consistency Model

Defines rules that a programmer can use to reason about a parallel execution

Sequential Consistency (SC)

“program-order”

ptr = NULL; = false

Producer Consumer

a: ptr = alloc() c: 1f ()
<b: = true d: rl = ptr—>x>

Memory Consistency Model

Defines rules that a programmer can use to reason about a parallel execution

Sequential Consistency (SC)
“program-order” +

“atomic memory”

ptr = NULL; = false

Producer Consumer

a: ptr = alloc() c: 1f ()
<b: = true d: rl = ptr—>x>

Data-race-free-0 (DRF-0) Memory Model

C++, Java

OpenCL, CUDA
Heterogeneous-race-free (HRF) (Hower et al., ASPLOS’14)

Data-race-free-0 (DRF-0) Memory Model

C++, Java

OpenCL, CUDA
Heterogeneous-race-free (HRF) (Hower et al., ASPLOS’14)

SC if data-race-free
Programmers annotate synchronizationvariables

ptr = NULL; |atomic = false
Producer Consumer
a: ptr = alloc() c: 1f ()

b: = true d: rl = ptr->x

Data-race-free-0 (DRF-0) Memory Model

C++, Java

OpenCL, CUDA
Heterogeneous-race-free (HRF) (Hower et al., ASPLOS’14)

SC if data-race-free
Programmers annotate synchronizationvariables
Compilerand runtime guarantee totalorder on synchronization operations

ptr = NULL; |atomic = false

Producer Consumer

a: ptr = alloc() c: 1f ()
<b: = true /d: rl = ptr—>x>

Data-race-free-0 (DRF-0) Memory Model

C++, Java

OpenCL, CUDA
Heterogeneous-race-free (HRF) (Hower et al., ASPLOS’14)

SC if data-race-free
Programmers annotate synchronizationvariables
Compilerand runtime guarantee totalorder on synchronization operations

ptr = NULL; = false
to ptrbeing NULL

reordering could Iead}

Producer Consumer
ptr = alloc() c: 1f ()
= true d: rl = ptr->x

o o

Data-race-free-0 (DRF-0) Memory Model

C++, Java

OpenCL, CUDA
Heterogeneous-race-free (HRF) (Hower et al., ASPLOS’14)

SC if data-race-free
Programmers annotate synchronizationvariables
Compilerand runtime guarantee totalorder on synchronization operations

Undefined semantics for programs with a data-race

Documented data-races in GPGPU programs

Image source: [Alglave et al., ASPLOS 2015]

Bug: a data-racein code for
dynamicload balancing
[Tyler Sorensen, MS thesis, 2014]

Other data-races:
N-body simulation [Betts et al., OOPSLA 2012]

RadixSort [Li et al., PPoPP 2012]
Efficient Synchronization Primitives for GPUs [Tyler Sorensen, MS thesis, 2014]

s there a motivation for DRF-0 over SC?

Performance of DRF-0 better than SC?

Very little for CPUs
IEEE Computer’98, PACT'02, ISCA’12

Is there a performance justification for DRF-0 (or TSO) over SC in GPUs?

Goals

Identify sources of SC violationin GPUs

Understand overhead of various memory ordering constraints in GPUs
DRF-0, TSO, SC

Bridge the gap between SC and DRF-0

Access-type aware GPU architecture

How can GPU violate SC?

Instructions are executed in-order

How can GPU violate SC?

Instructions are executed in-order

But, can complete out-of-order
— Cachingat L1

— Reorderingininterconnect
— Partitioned addressspace

How can GPU violate SC?

Instructions are executed in-order producer consumer

Q ptr = alloc() 9 if (done)
But, can complete out-of-order
— Cachingat L1
— Reorderingininterconnect
— Partitioned addressspace

@ done = true @ rl = ptr->x

How can GPU violate SC?

Instructions are executed in-order producer

o ptr = alloc()
But, can complete out-of-order

— Cachingat L1

— Reorderingin interconnect B cache miss
— Partitioned addressspace

@ done = true

cache hit

consumer

9 if (done)

rl = ptr->x

How can GPU violate SC?

Instructions are executed in-order producer

o ptr = alloc()
But, can complete out-of-order

— Cachingat L1

— Reorderingin interconnect B cache miss
— Partitioned addressspace

done = true

cache hit

consumer

9 if (done)

rl = ptr->x

How can GPU violate SC?

Instructions are executed in-order producer

‘) ptr = alloc()
But, can complete out-of-order

— Cachingat L1

— Reorderingin interconnect B cache miss
— Partitioned addressspace

done = true

cache hit

consumer

if (done)

rl = ptr->x

How can GPU violate SC?

Instructions are executed in-order producer

‘) ptr = alloc()
But, can complete out-of-order

— Cachingat L1

— Reorderingin interconnect B cache miss
— Partitioned addressspace

done = true

cache hit

consumer
if (done)

rl = ptr->x

How can GPU violate SC?

Instructions are executed in-order producer consumer
0 ptr = alloc() if (done)
But, can complete out-of-order \
done = true rl = ptr->x

— Cachingat L1
— Reorderingininterconnect B cache miss
— Partitioned addressspace cache hit

— Can violate SC

Roadmap

Identify sources of SC violation

Bridge the gap between SC and DRF-0

Access-type aware GPU architecture

Fences for various memory models

DRF-0

fences only for synchronization

SC

any or access behaves like a fence

Naively Enforcing Fence Constraints

Delay a warp till non-local memory accesses preceding a fence are complete

Shared memory access

) memory access
Fence

Naively Enforcing Fence Constraints

Delay a warp till non-local memory accesses preceding a fence are complete

Shared memory access

memory access
) Fence
GPU extension:
Two counters per warp track its pending loads and stores
No need to track pending memory accesses warp |pending loads| pending stores

id
w0 0 1

Experimental Methodology

Simulator: GPGPU-sim v3.2.1

— extended with Ruby memory hierarchy
— 16 SMs, crossbarinterconnect

L1 Cache Coherence protocol
— MESI for write-back
— Valid/Invalid for write-through

Benchmarks

— applications from Rodinia, Polybench benchmark suite
— Applications used in GPU coherence [Singh et al., HPCA’13]

18 out of 22 applicationsincur
insignificant SC overhead

1

Avg. execution time
normalized DRF-0 05

0

DRF-0 SC

Warp-level-parallelism (WLP) masks
SC overhead

Warp-0

Cache miss Cache Hit

Warp-level-parallelism (WLP) masks
SC overhead

Warp-0

Cache miss Cache Hit

Warp-level-parallelism (WLP) masks
SC overhead

Warp-0 wl w2 w3

SC can exploitinter-warp MLP

Cache miss Cache Hit

Warp-level-parallelism (WLP) masks
SC overhead

Warp-0 wl w2 w3

SC can exploitinter-warp MLP

Adequate WLP => Low SC overhead

Cache miss Cache Hit

Warp-level-parallelism (WLP) masks
SC overhead

3 B DRF-0 WSC

2.2
. 1.97
l SC can exploitinter-warp MLP
1
0 - Adequate WLP => Low SC overhead
8 thread 1 thread
block/SM block/SM

Execution time normalizedto DRF-0
(benchmark: guassian)

Higher SC overhead in apps
where intra-warp MLP is important

Warp-1 Warp-2

Need for intra-warp MLP
App has fewer warps
Want fewer warps to avoid cache thrashing

Cache miss Cache Hit

Higher SC overhead in apps
where intra-warp MLP is important

Warp-1 Warp-2

Need for intra-warp MLP
App has fewer warps
Want fewer warps to avoid cache thrashing

Cache miss Cache Hit

Higher SC overhead in apps
where intra-warp MLP is important

Warp-1 Warp-2

Need for intra-warp MLP
App has fewer warps
Want fewer warps to avoid cache thrashing

Cache miss Cache Hit

In-order execution limits the ability to
exploit intra-warp MLP in DRF-0

Higher SC overhead in apps
where intra-warp MLP is important

Warp-1 Warp-2
Unlike DRF-0, SC cannot exploit intra-warp MLP

Need for intra-warp MLP
App has fewer warps
Want fewer warps to avoid cache thrashing

Cache miss Cache Hit

In-order execution limits the ability to
exploit intra-warp MLP in DRF-0

4 out of 22 applications exhibit
significant SC overhead

3

Execution time
normalized to DRF-0

EEENE

fdtd-2d gemm gramschm
B DRF-0 mSC

Reason: Unlike DRF-0, SC cannot exploit intra-warp MLP

39

TSO is not suitable for GPUs

Applications with small performance Applications with significant performance
overhead overhead
3 3
2 2
N B B
0 0
DRF-0 TSO SC 3mm fdtd-2d gemm gramschm

B DRF-0 MTSO ESC

Execution time normalizedto baseline (DRF-0)

TSO does not offer much performance or
programmability advantage over SC

Roadmap

How GPU optimizationscan violate memory ordering constraints?

Understand overhead of various memory ordering constraints in GPUs
DRF-0, TSO, SC

Access-type Aware Optimization for GPU

Relax ordering constraint for safe accesses
Accesses to thread-private orread-onlylocation are safe
(Shasha & Snir, TOPLAS’88, Singh et al., ISCA’12)

Thread-level classification is prohibitively expensive
Classify accesses as unsafe or SM-safe

Type-aware SC Extensions to Baseline GPU

SM 1

» Shared memory

1. Classify memory accesses

Coal-

Frontend >
escing L1D

T a[npow ¢7

193UU0JJ3U|

L 3npow ¢’

Type-aware SC Extensions to Baseline GPU

1. Classify memory accesses

SM 1

Frontend

Coal-
escing

» Shared memory

"| L1D

<
—
— 2 | O
o | 3
J o
> S
c
)
— [
5
~t
o
-
(@)
(@)
S
>
—
S N
3
| o
g =2
< | =
)
4—>>
0O [
N

Type-aware SC Extensions to Baseline GPU

1. Classify memory accesses

SM 1

Frontend

Coal-

» Shared memory

0 JVIA

escing

l

Type-
Cache

"| L1D

193UU0JJ3U|

T a[npow ¢7

LIOVIN

L 3npow ¢’

Type-aware SC Extensions to Baseline GPU

1. Classify memory accesses

Frontend

» Shared memory

SM 1
Coal- -
escing TTTT
I Type-wait
Cache

" L1D

<
—
— 2 | O
o | 3
J o
> S
c
)
— [
5
~t
o
-
(@)
(@)
S
>
—
S N
3
| o
g =2
< | =
)
4—>>
0O [
N

Type-aware SC Extensions to Baseline GPU

1. Classify memory accesses

2. Relax ordering constraints
for SM-safe accesses

Frontend

SM 1
» Shared memory
Safe queue
IITT]
Coal- S |l Unsafe queue |»
escing o o | TI1T11 LD
I Type-wait :
Type-| Queue (TQ) . .
Memory Ordering
Cache
Buffer (MoB)

<
—
— 2 | O
o | 3
J o
g =
c
1)
— =
5
~t
®
=
(@)
(@)
S
>
—
S N
3
| o
> S
< | =
)
4—>>
0O |
~

Type-aware SC Extensions to Baseline GPU

1. Classify memory accesses

2. Relax ordering constraints
for SM-safe accesses

Problem: Ensuring ordering among conflicting

Frontend

0 JVIA

SM 1
» Shared memory
Safe queue
IITT]
Coal- S |l Unsafe queue |»
escing o o | TI1T11 L1b
I Type-wait :
Type-| Queue (TQ) . .
Memory Ordering
Cache
Buffer (MoB)

193UU0JJ3U|

T 3|jnpow 77

accesses to an SM-safe location within an SM

See details in the paper

LIOVIN

L s|nhpow 7

Type-aware SC incurs only small
performance overhead

Applications with significant performance overhead

O — — —

3mm fdtd-2d gemm gramschm

M DRF-0 SC Type-aware SC

Proposed design is able to exploitintra-warp MLP for SM-safe accesses

Future research directions

Build SC-preserving GPU compiler

Overhead SC-preserving LLVM compiler for C++: ~¥2% [Marino et al., PLDI'11]

Language level memory model

(N
? GPU Compiler

[] _ J

GPU hardware

Conclusion

Quantified performance overhead of various memory models in GPUs

TSO is unattractive for GPUs: No performance or programmability benefits over SC
Performance gap between SC and DRF-0 is insignificant for most applications

Access type aware optimization bridges the gap in remaining applications

Questions?

