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Motivation 2 

!  Low server utilization in today’s datacenters results in 
resource and energy inefficiency 

!  Stringent latency requirements of user-facing services is a 
major contributing factor 

!  Power management for these services is challenging 
! Strict requirements on tail latency 
!  Inherent variability in request arrival and service times 

!  Rubik uses statistical modeling to adapt to short-term 
variations 
! Respond to abrupt load changes 
!  Improve power efficiency 
! Allow colocation of latency-critical and batch applications 
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Understanding Latency-Critical Applications 
6 

!  The few slowest responses determine user-perceived latency 
!  Tail latency (e.g., 95th / 99th percentile), not mean latency, determines 

performance 
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Prior Schemes Fall Short 7 

!  Traditional DVFS schemes (cpufreq, TurboBoost…) 
! React to coarse grained metrics like processor utilization, 

oblivious to short-term performance requirements 

!  Power management for embedded systems (PACE, 
GRACE…) 
! Do not consider queuing 

!  Schemes designed specifically for latency-critical systems 
(PEGASUS [Lo ISCA’14], Adrenaline [Hsu HPCA’15]) 
! Rely on application-specific heuristics 
! Too conservative 



Insight 1: Short-Term Load Variations 8 

!  Latency-critical applications have significant short-term load 
variations 

!  PEGASUS [Lo ISCA’14] uses feedback control to adapt frequency 
setting to diurnal load variations 
!  Deduce server load from observed request latency 
!  Cannot adapt to short-term variations 
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Insight 2: Queuing Matters! 9 

!  Tail latency is often determined 
by queuing, not the length of 
individual requests 

!  Adrenaline [Hsu HPCA’15] uses 
application-level hints to 
distinguish long requests from 
short ones 
!  Long requests boosted (sped up) 
!  Frequency settings must be 

conservative to handle queuing 
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Rubik Overview 10 

!  Use queue length as a measure of instantaneous system 
load 

!  Update frequency whenever queue length changes 
! Adapt to short-term load variations 
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Goal: Reshaping Latency Distribution 11 

Response Latency 

Probability 
Density 



Key Factors in Setting Frequencies 12 

!  Distribution of cycle requirements of individual requests 
! Larger variance " more conservative frequency setting 

!  How long has a request spent in the queue? 
! Longer wait times " higher frequency 

!   How many requests are queued waiting for service 
! Longer queues " higher frequency 



There’s Math! 13 
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Efficient Implementation 14 

!  Pre-computed tables store most of the required quantities 

!  Table contents are independent of system load! 
!  Implemented as a software runtime 

! Hardware support: fast, per-core DVFS, performance counters 
for CPI stacks 
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Evaluation 15 

!  Microarchitectural simulations using zsim 
!  Power model tuned to a real system 

!  Compare Rubik against two oracular schemes: 
!  StaticOracle: Pick the lowest static frequency that meets latency 

targets for a given request trace 
! AdrenalineOracle: Assume oracular knowledge of long and short 

requests, use offline training to pick frequencies for each 
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o  Westmere-like OOO cores 
o  Fast per-core DVFS 
o  CPI stack counters 
o  Pin threads to cores 



Evaluation 16 

!  Five diverse latency-critical applications 
! xapian (search engine) 
! masstree (in-memory key-value store) 
! moses (statistical machine translation) 
!  shore-mt (OLTP) 
!  specjbb (java middleware) 

!  For each application, latency target set at the tail latency 
achieved at nominal frequency (2.4 GHz) at 50% 
utilization 



Tail Latency 17 
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Core Power Savings 19 

!  All three schemes save significant power at low utilization 
! Rubik performs best, reducing core power by up to 66% 
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!  All three schemes save significant power at low utilization 
! Rubik performs best, reducing core power by up to 66% 

!  Rubik’s relative savings increase as short-term adaptation 
becomes more important 
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Core Power Savings 21 

!  All three schemes save significant power at low utilization 
! Rubik performs best, reducing core power by up to 66% 

!  Rubik’s relative savings increase as short-term adaptation 
becomes more important 

!  Rubik saves significant power even at high utilization 
! 17% on average, and up to 34% 
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Real Machine Power Savings 22 

!  V/F transition latencies of >100 µs even with integrated 
voltage controllers 
! Likely due to inefficiencies in firmware 

!  Rubik successfully adapts to higher V/F transition 
latencies 
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Static Power Limits Efficiency 23 
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RubikColoc: Colocation Using Rubik 24 
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RubikColoc Savings 25 

!  RubikColoc saves significant power and resources over a 
segregated datacenter baseline 
! 17% reduction in datacenter power consumption; 19% fewer 

machines at high load 
! 31% reduction in datacenter power consumption, 41% fewer 

machines at high load 



Conclusions 26 

!  Rubik uses fine-grained power management to reduce 
active core power consumption by up to 66% 

!  Rubik uses statistical modeling to account for various 
sources of uncertainty, and avoids application-specific 
heuristics 

!  RubikColoc uses Rubik to colocate latency-critical and 
batch applications, reducing datacenter power 
consumption by up to 31% while using up to 41% fewer 
machines 
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