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Motivation

Low server utilization in today’s datacenters results in
resource and energy inefficiency

Stringent latency requirements of user-facing services is a
major contributing factor
Power management for these services is challenging

Strict requirements on tail latency

Inherent variability in request arrival and service times
Rubik uses statistical modeling to adapt to short-term
variations

Respond to abrupt load changes

Improve power efficiency

Allow colocation of latency-critical and batch applications



Understanding Latency-Critical Applications
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Understanding Latency-Critical Applications
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0 The few slowest responses determine user-perceived latency

0 Tail latency (e.g., 95™ / 99™ percentile), not mean latency, determines
performance



Prior Schemes Fall Short ,

Traditional DVFS schemes (cpufreq, TurboBoost...)

React to coarse grained metrics like processor utilization,
oblivious to short-term performance requirements

Power management for embedded systems (PACE,
GRACE...)

Do not consider queuing

Schemes designed specifically for latency-critical systems
(PEGASUS [Lo ISCA'14], Adrenaline [Hsu HPCA’15])

Rely on application-specific heuristics

Too conservative



Insight 1: Short-Term Load Variations

Latency-critical applications have significant short-term load
variations
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PEGASUS [Lo ISCA’14] uses feedback control to adapt frequency
setting to diurnal load variations

Deduce server load from observed request latency
Cannot adapt to short-term variations



Insight 2: Queuing Matters!
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Rubik Overview o

Use queue length as a measure of instantaneous system
load

Update frequency whenever queue length changes
Adapt to short-term load variations
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Goal: Reshaping Latency Distribution .
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Key Factors in Setting Frequencies i

Distribution of cycle requirements of individual requests

Larger variance = more conservative frequency setting

How long has a request spent in the queue?

Longer wait times = higher frequency

How many requests are queued waiting for service

Longer queues = higher frequency



There’s Math!
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Efficient Implementation y

Pre-computed tables store most of the required quantities

Target Tail Tables

iodi Ch C C C
Updated Periodically B B 15 m,
o < 25% pct
® < 50" pct
o < 75" pet Read on each request
Otherwise arrival /departure
1 [

Table contents are independent of system load!
Implemented as a software runtime

Hardware support: fast, per-core DVFS, performance counters
for CPI stacks



Evaluation

Microarchitectural simulations using zsim
Power model tuned to a real system

SR SR

O Westmere-like OOOQO cores
Shared L3 o Fast per-core DVFS

o CPI stack counters
O Pin threads to cores

S S

Compare Rubik against two oracular schemes:

StaticOracle: Pick the lowest static frequency that meets latency

targets for a given request trace

AdrenalineOracle: Assume oracular knowledge of long and short

requests, use offline training to pick frequencies for each

15



Evaluation .

Five diverse latency-critical applications
xapian (search engine)
masstree (in-memory key-value store)
moses (statistical machine translation)

shore-mt (OLTP)

specjbb (java middleware)

For each application, latency target set at the tail latency
achieved at nominal frequency (2.4 GHz) at 50%
utilization



Tail Latency
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Core Power Savings
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All three schemes save significant power at low utilization

Rubik performs best, reducing core power by up to 66%
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All three schemes save significant power at low utilization

Rubik performs best, reducing core power by up to 66%

Rubik’s relative savings increase as short-term adaptation
becomes more important




Core Power Savings o
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o1 All three schemes save significant power at low utilization

Rubik performs best, reducing core power by up to 66%

71 Rubik’s relative savings increase as short-term adaptation
becomes more important

7 Rubik saves significant power even at high utilization

17% on average, and up to 34%




Real Machine Power Savings -

=1 V/F transition latencies of >100 [s even with integrated
voltage controllers

Likely due to inefficiencies in firmware

1 Rubik successfully adapts to higher V /F transition
latencies
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Static Power Limits Efficiency 23
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RubikColoc: Colocation Using Rubik
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RubikColoc Savings

25

[ RubikColoc W StaticOracle (Segregated)

1.0;

0.8 ¢

0.6 |

0.4

Normalized Server Count

0.2 ¢

Normalized Datacenter Power

0.0
10% 60% 10% 60%
LC Load LC Load

71 RubikColoc saves significant power and resources over a
segregated datacenter baseline

17% reduction in datacenter power consumption; 19% fewer
machines at high load

31% reduction in datacenter power consumption, 41% fewer
machines at high load



Conclusions ”

Rubik uses fine-grained power management to reduce
active core power consumption by up to 66%

Rubik uses statistical modeling to account for various
sources of uncertainty, and avoids application-specific
heuristics

RubikColoc uses Rubik to colocate latency-critical and
batch applications, reducing datacenter power
consumption by up to 31% while using up to 41% fewer
machines
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