
RUBIK: FAST ANALYTICAL POWER MANAGEMENT
FOR LATENCY-CRITICAL SYSTEMS

HARSHAD KASTURE, DAVIDE BARTOLINI, NATHAN BECKMANN,
DANIEL SANCHEZ

MICRO 2015

Motivation 2

!  Low server utilization in today’s datacenters results in
resource and energy inefficiency

!  Stringent latency requirements of user-facing services is a
major contributing factor

!  Power management for these services is challenging
! Strict requirements on tail latency
!  Inherent variability in request arrival and service times

!  Rubik uses statistical modeling to adapt to short-term
variations
! Respond to abrupt load changes
!  Improve power efficiency
! Allow colocation of latency-critical and batch applications

Understanding Latency-Critical Applications
3

Client Root Node

Back End
Back End

Datacenter

Leaf Node

Back End
Back End

Leaf Node

Back End
Back End

Leaf Node

Understanding Latency-Critical Applications
4

Client Root Node

Back End
Back End

Datacenter

Leaf Node

Back End
Back End

Leaf Node

Back End
Back End

Leaf Node

Understanding Latency-Critical Applications
5

Client Root Node

Back End
Back End

Datacenter

Leaf Node

Back End
Back End

Leaf Node

Back End
Back End

Leaf Node

Understanding Latency-Critical Applications
6

!  The few slowest responses determine user-perceived latency
!  Tail latency (e.g., 95th / 99th percentile), not mean latency, determines

performance

Client Root Node

Back End
Back End

Datacenter

Leaf Node

Back End
Back End

Leaf Node

Back End
Back End

Leaf Node
1 ms

1 ms

Prior Schemes Fall Short 7

!  Traditional DVFS schemes (cpufreq, TurboBoost…)
! React to coarse grained metrics like processor utilization,

oblivious to short-term performance requirements

!  Power management for embedded systems (PACE,
GRACE…)
! Do not consider queuing

!  Schemes designed specifically for latency-critical systems
(PEGASUS [Lo ISCA’14], Adrenaline [Hsu HPCA’15])
! Rely on application-specific heuristics
! Too conservative

Insight 1: Short-Term Load Variations 8

!  Latency-critical applications have significant short-term load
variations

!  PEGASUS [Lo ISCA’14] uses feedback control to adapt frequency
setting to diurnal load variations
!  Deduce server load from observed request latency
!  Cannot adapt to short-term variations

moses

0.0 1.0 2.0 3.0 4.0
Time (s)

0
50

100
150
200
250
300

Q
PS

Insight 2: Queuing Matters! 9

!  Tail latency is often determined
by queuing, not the length of
individual requests

!  Adrenaline [Hsu HPCA’15] uses
application-level hints to
distinguish long requests from
short ones
!  Long requests boosted (sped up)
!  Frequency settings must be

conservative to handle queuing

moses

0.0 1.0 2.0 3.0 4.0
Time (s)

0.0
3.0
6.0
9.0

12.0
15.0

R
es

po
ns

e
Ti

m
e

(m
s)

0.0 1.0 2.0 3.0 4.0
Time (s)

0

1

2

3

4

Se
rv

ic
e

Ti
m

e
(m

s)

0.0 1.0 2.0 3.0 4.0
Time (s)

0

2

4
Q

ue
ue

Le
n

Rubik Overview 10

!  Use queue length as a measure of instantaneous system
load

!  Update frequency whenever queue length changes
! Adapt to short-term load variations

Core
Activity

Time

Queue
Length

Core
Frequency

Time

Time

Idle

Rubik

Goal: Reshaping Latency Distribution 11

Response Latency

Probability
Density

Key Factors in Setting Frequencies 12

!  Distribution of cycle requirements of individual requests
! Larger variance " more conservative frequency setting

!  How long has a request spent in the queue?
! Longer wait times " higher frequency

!  How many requests are queued waiting for service
! Longer queues " higher frequency

There’s Math! 13

Cycles Cycles ω€

P[S0 = c] = P[S = c +ω | S >ω] =
P[S = c +ω]
P[S >ω]

€

PSi = PSi−1 *PS = PS0 *PS *PS * ...*PS

i times! " # # $ # #

Cycles Cycles Cycles

€

*

€

f ≥max
i=0...N

ci
L − (ti +mi)

Efficient Implementation 14

!  Pre-computed tables store most of the required quantities

!  Table contents are independent of system load!
!  Implemented as a software runtime

! Hardware support: fast, per-core DVFS, performance counters
for CPI stacks

m0 m1 m2 m15

ω = 0
ω < 25th pct
ω < 50th pct
ω < 75th pct

Target Tail Tables
c0 c1 c2 c15

ω = 0
ω < 25th pct
ω < 50th pct
ω < 75th pct

Otherwise

Updated Periodically

Read on each request
arrival/departure

Evaluation 15

!  Microarchitectural simulations using zsim
!  Power model tuned to a real system

!  Compare Rubik against two oracular schemes:
!  StaticOracle: Pick the lowest static frequency that meets latency

targets for a given request trace
! AdrenalineOracle: Assume oracular knowledge of long and short

requests, use offline training to pick frequencies for each

Core 0

Shared L3

Core 1 Core 2

Core 3 Core 4 Core 5

o  Westmere-like OOO cores
o  Fast per-core DVFS
o  CPI stack counters
o  Pin threads to cores

Evaluation 16

!  Five diverse latency-critical applications
! xapian (search engine)
! masstree (in-memory key-value store)
! moses (statistical machine translation)
!  shore-mt (OLTP)
!  specjbb (java middleware)

!  For each application, latency target set at the tail latency
achieved at nominal frequency (2.4 GHz) at 50%
utilization

Tail Latency 17

0.00

0.25

0.50

0.75
Lo

ad

0.00
0.40
0.80
1.20
1.60
2.00

Ta
il

La
t

(m
s)

0.0 1.0 2.0
Time (s)

0.0
0.8
1.6
2.4
3.2

Fr
eq

s
(G

H
z)

StaticOracle Rubik AdrenalineOracle

Tail Latency 18

0.00

0.25

0.50

0.75
Lo

ad

0.00
0.40
0.80
1.20
1.60
2.00

Ta
il

La
t

(m
s)

0.0 1.0 2.0
Time (s)

0.0
0.8
1.6
2.4
3.2

Fr
eq

s
(G

H
z)

StaticOracle Rubik AdrenalineOracle

Core Power Savings 19

!  All three schemes save significant power at low utilization
! Rubik performs best, reducing core power by up to 66%

masstree moses shore specjbb xapian mean
30% 30% 30% 30% 30% 30%0

10
20
30
40
50
60
70

Co
re

 P
ow

er
 S

av
in

gs
 (%

)

StaticOracle
AdrenalineOracle
Rubik

Core Power Savings 20

!  All three schemes save significant power at low utilization
! Rubik performs best, reducing core power by up to 66%

!  Rubik’s relative savings increase as short-term adaptation
becomes more important

masstree moses shore specjbb xapian mean
30% 40% 30% 40% 30% 40% 30% 40% 30% 40% 30% 40%0

10
20
30
40
50
60
70

Co
re

 P
ow

er
 S

av
in

gs
 (%

)

StaticOracle
AdrenalineOracle
Rubik

Core Power Savings 21

!  All three schemes save significant power at low utilization
! Rubik performs best, reducing core power by up to 66%

!  Rubik’s relative savings increase as short-term adaptation
becomes more important

!  Rubik saves significant power even at high utilization
! 17% on average, and up to 34%

masstree moses shore specjbb xapian mean
30% 40% 50% 30% 40% 50% 30% 40% 50% 30% 40% 50% 30% 40% 50% 30% 40% 50%0

10
20
30
40
50
60
70

Co
re

 P
ow

er
 S

av
in

gs
 (%

)

StaticOracle
AdrenalineOracle
Rubik

Real Machine Power Savings 22

!  V/F transition latencies of >100 µs even with integrated
voltage controllers
! Likely due to inefficiencies in firmware

!  Rubik successfully adapts to higher V/F transition
latencies

masstree moses
30% 40% 50% 30% 40% 50%0

10

20

30

40

50

60

Co
re

 P
ow

er
 S

av
in

gs
 (%

)

StaticOracle Rubik

Static Power Limits Efficiency 23

Datacenter

Latency-critical
Utilization

Idle

Batch
Utilization

RubikColoc: Colocation Using Rubik 24

RubikColoc

Statically
Partitioned LLC

Rubik sets
Latency-Critical
Frequencies

RubikColoc Savings 25

!  RubikColoc saves significant power and resources over a
segregated datacenter baseline
! 17% reduction in datacenter power consumption; 19% fewer

machines at high load
! 31% reduction in datacenter power consumption, 41% fewer

machines at high load

Conclusions 26

!  Rubik uses fine-grained power management to reduce
active core power consumption by up to 66%

!  Rubik uses statistical modeling to account for various
sources of uncertainty, and avoids application-specific
heuristics

!  RubikColoc uses Rubik to colocate latency-critical and
batch applications, reducing datacenter power
consumption by up to 31% while using up to 41% fewer
machines

THANKS FOR YOUR ATTENTION!

QUESTIONS?

