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Searching large data is becoming prevalent

= Data is growing exponentially
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* Online Search (OLS): Interactively query and access data

= Key component of many web applications, not only Web
Search (e.g., Facebook, Twitter, advertisements)



Energy management for OLS is hard

Traditional energy management does not work

1. Interactive, strict service-level agreements (SLAS)
= Cannot batch

2. Shortresponse times and inter-arrival times (e.g.,
200 ms and = 1 ms for Web Search)

" Low-power modes (e.g., p-states) not applicable

3. Shard data over 1000s of servers = each query searches
all servers

= Cannot consolidate workload to fewer servers

Carefully slow down (not turn off) servers
without violating SLAs



Previous work

" Pegasus [ISCA’14]: Achieves load-proportional energy
" Uses (global) datacenter-wide response times
= Shifts latency distribution at low loads

v'Saves energy at low loads
x Does not save much at high loads
= Saves 0% at peak load

" Datacenters operate at moderate-peak during the day
(diurnal pattern) = savings desired at high loads

Pegasus saves energy at low loads but limited savings at
high loads



TimeTrader: contributions

Each query leads to 1000s of sub-queries
Each query’s budget set to accommodate 99" %-ile sub-query
" |n both network and compute parts

= Key observation: 80% sub-queries complete in 20% of budget

1. TimeTrader exploits both network and compute slack to
save energy



TimeTrader: contributions (cont.)

2. Uses (local) per-sub-query latencies = reshapes sub-
guery response time distribution at all loads
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TimeTrader: contributions (cont.)

3. Leverages networksignals to determine slack
= Does not need fine-grained clock synchronization

4. EmploysEarliest Deadline First (EDF) scheduling
= Slowing down a sub-query affects other queued sub-queries
= Critical sub-queries affected the most
= Allows critical sub-queries to bypass others

TimeTrader is the first to explore cross-layer optimization
between network and architecture layers;
saves 15% - 40% energy at peak - 30% loads



Outline

= Background
= OLS architecture
" Tail latencies and SLA budgets

" TimeTrader’s design
=" Methodology

= Results



Background: OLS architecture
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= Root waits until deadline to generate overall response
= Some replies may take longer in network or compute
= Collisions in network = TCP retransmit
» Imperfect sharding = disproportionately large compute
» Long tails = tail latency problem
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OLS tail latencies and SLA budgets

=" Missed replies due to tail latency affect quality
" e.g., SLA of 1% missed deadlines
* Time budgets based on 99t" %-ile latency of sub-queries

" To optimize network and
compute separately

= Split budget into network and
compute

" e.g., total = 250 ms
- flow deadlines 25 ms

80% of sub-queries complete within 20% of budget = slack
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Outline

= Introduction
" Background

" TimeTrader’s design
= Key ideas
= Determining slack
= Slowing down based on slack
= EDF

=" Methodology

= Results
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TimeTrader: design

" TimeTrader exploits per-sub-query slack

= Sources of slack
= Network
v'Request
xReply (after compute, unpredictable)
= Compute
x Actual compute (query dependent)
v'Queuing (due to local load variations)

1. Determine (a) request slack and (b) compute slack

2. Slow down based on slack and load
3. Shield critical sub-queries from slowed down sub-queries

=" EDF implementation

" Intel’s Running Avg. Power Limit (RAPL) to set power states
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1(a): Determine request slack

" Requests traverse network from root to leaf

"= Timestamp at parent and leaf?
% Clock skew = slack
v" Estimate based on already-available network signals

= e.g., Explicit Congestion Notification (ECN) marks,
TCP timeouts

If a leaf doesn’t see either ECN or Timeouts
Request Slack = Network Budget - Median Latency

Else
Request Slack =0
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1(b): Determine compute-queuing slack

= Exploit local load variations in each leaf server
= Slack calculation
= Details in the paper

Total Slack = Request Slack + Compute-Queuing Slack
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2: Slow down based on slack

= Given the slack, calculate slow down factor
" As a fraction of compute budget

= But not all of the slack can be used
= Slack calculation assumes no queuing
= Need to scale slack based on load

Slowdown factor = Total Slack * Scale / Compute Budget

= Scale dependson load
* Feedback controller (details in the paper)
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3: Shield critical sub-queries

= Earliest Deadline First (EDF)
" Implementation details in the paper
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" Introduction

= Background

" TimeTrader’s design
= Methodology

= Results

Outline

17



Methodology

= Compute

= Real measurements for service time, power
= Network

= Real measurements at a small scale

= Tails effects only in large clusters - simulate with ns-3
Workload: Web Search (Search) from CloudSuite 2.0
= Search index from Wikipedia
= 3000 queries/s at peak load =2 90% load
= Deadline budget: Overall 125 ms
= Network (request/reply): 25 ms
= Compute: 75 ms
= SLA of 1% missed deadlines
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|dle and Active Energy Savings
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TimeTrader reshapes distribution at all loads;

Slows ~80% of requests at all loads



Conclusion

TimeTrader...
= Exploits sub-query slack

= Reshapes response time distribution at all loads
= Saves 15% energy at peak, 40% energy at 30% load
" L everages network signals to estimate slack

" Employs EDF to decouple critical sub-queries from sub-
critical sub-queries

TimeTrader converts the performance disadvantage of
latency tail into an energy advantage!
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