Modeling the Implications of DRAM Failures and Protection Techniques on Datacenter TCO

Panagiota Nikolaou1, Yiannakis Sazeides1, Lorena Ndreu1, Marios Kleanthous2

1University of Cyprus, 2MAP S.Platis

MICRO 48, Waikiki, Hawaii, December 5th 2015
Today’s Datacenters

> 510,000 DC in all over the world [Emerson, 2011]

> 285 Million Sqft [Emerson, 2011]

Large scale Datacenters: >10,000 commodity servers

Many Million $ per month
Datacenter Cost

[Analysis using COST-ET tool, D. Hardy 2013]

P. Nikolaou MICRO 48, Waikiki, Hawaii
DRAM Protection Cost

[Analysis using COST-ET tool, D. Hardy 2013]

P. Nikolaou MICRO 48, Waikiki, Hawaii
Do we need DRAM protection?

- Google Failure Study [Barroso, 2009]
- DRAM large field studies [V. Shridharan 2012, 2013]

DRAM protection is essential !!
DRAM protection choices

<table>
<thead>
<tr>
<th></th>
<th>ChipkillDC</th>
<th>ChipkillSC</th>
<th>SECDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Reliability</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Performance</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
</tbody>
</table>
DRAM protection selection

*Analyzer of Memory Protection and Failures Implications on TCO (AMPRA tool), site: http://www2.cs.ucy.ac.cy/carch/xi/ampra_tco.php
Our Proposition & our Contribution

AMPRA tool

- DIMM FIT Model
- DRAM SDC Model
- Availability/MTTF Model
- Energy Model
- Thermal Model
- DIMM Cost Model
- Server Performance Model
- TCO Model

Best DRAM Protection Technique

- Performance
- Reliability
- Power
- Application Characteristics
- Error protection techniques

Related work

• [Y. Luo DSN 2014] Proposes and analyzes cost of a heterogeneous memory protection scheme

Differences:

– Performance, power implications of memory protection techniques

– Co-located services

– Datacenter cost

• No other related work considers various parameters
Outline

• Proposed Framework (AMPRA tool)
• Use Case
• Experimental Framework
• Results
• Conclusions
Outline

- Proposed Framework (AMPRA tool)
- Use Case
- Experimental Framework
- Results
- Conclusions
Use Case

Bandwidth vs. Latency vs. Reliability vs. Power
Chipkill with Dual Channel Implementation (ChipkillDC)
Chipkill with Single Channel Implementation (ChipkillSC)
16 ECC bits for 128 Data bits-144 bit codeword
FIT model

• ChipkillDC:
 – Detects all the errors in 2 devices
 – Corrects all the errors in 1 device

• ChipkillSC:
 – Cannot detect all the errors in 2 devices
 – Corrects all the errors in 1 device

ChipkillDC can provide better Reliability than ChipkillSC
Performance and Power model

How it works: (ChipkillDC)

- Read

• Requires accessing two DIMMs
• Codeword in a single burst
• Latency short 😊
• Low Bandwidth 😞
• High Power Consumption 😞
Performance and Power model

How it works: (ChipkillSC)

- Read

64B Block

• Requires accessing one DIMM
• Codeword in two bursts
• Latency long 😞
• High Bandwidth 😊
• Less Power Consumption 😊
Design Space

<table>
<thead>
<tr>
<th></th>
<th>ChipkillSC</th>
<th>ChipkillDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>Cannot detect all the errors in 2 devices</td>
<td>Detect all the errors in 2 devices</td>
</tr>
<tr>
<td></td>
<td>Corrects all the errors in 1 device</td>
<td>Corrects all the errors in 1 device</td>
</tr>
<tr>
<td>Bandwidth</td>
<td> Access one DIMM</td>
<td> Access two DIMMs</td>
</tr>
<tr>
<td>Latency</td>
<td> Codeword in two bursts</td>
<td> Codeword in one burst</td>
</tr>
<tr>
<td>Power</td>
<td> Access one DIMM</td>
<td> Access two DIMMs</td>
</tr>
</tbody>
</table>

What happens with the Cost?

- **Application characteristics**
 - Memory intensive, compute intensive
 - Co-running applications
Online and Offline Services

Online Services: High QoS requirements

Offline Services: Do not have QoS constrains

Co-location: Improve server utilization and reduce TCO
Outline

• Proposed Framework (AMPRA tool)
• Use Case
• Experimental Framework
• Results
• Conclusions
Experimental Framework

Performance, Power and Thermal Model

- **ChipkillDC** - Lockstep Mode
 - Server Configuration: Intel Xeon E5-5620
 - 4 cores per CPU
 - 2 channels per CPU
 - 1 DIMM per Channel

- **ChipkillSC** - Advance Mode

Workloads

1. Web Search (QoS requirements)
2. MapReduce:
 - 500MB (CPU intensive)
 - 49000MB (memory intensive)

DIMM Cost

- Public Data

Fit Model

- Analytical Models

DC Configuration

- Server Modules: 50,000
- DC depreciation: 15 year

TCO Model

- Extension COST-ET Tool [D. Hardy 2013]

P. Nikolaou

MICRO 48, Waikiki, Hawaii
DRAM Protection Implications on Performance

Graphical Data

- **WS alone**
- **WS +1 MR500**
- **WS +1 MR49000**

Legend
- **ChipkillSC**
- **ChipkillDC**

Label
- Average Search time (ms)

Cases
- WS: Web Search
- MR500: Map Reduce 500MB
- MR49000: Map Reduce 49000MB

P. Nikolaou
MICRO 48, Waikiki, Hawaii
DRAM Protection Implications on Power

WS: Web Search
MR500: Map Reduce 500MB
MR49000: Map Reduce 49000MB
• **Underlines the importance of understanding the usage and characteristics of all the services to be run in a DC before making memory protection design choices**

• **Highlights the need of proposed framework !!**
Usage

• **Datacenter designers:** Select processor and protection technique

• **Researchers:** Investigate the implications of new ideas related to DRAM failures and DRAM protection techniques

• **Service providers:** Find how to charge for running offline services and to makeup for the increase in TCO due to co-location
More in the paper

• Detailed explanation of each model

• DRAM grades and how affect TCO

• Results for other protection techniques (SECDED)

• Power and performance results for more applications
Conclusions

• DRAM is one of the dominant cost consumers in a DC

• Different protection techniques have different TCO implications

• Framework to encapsulates all the parameters and tries to determine the cost-effective protection technique for a DC

• Highlight the need of the framework
 – It is not straightforward to decide which DRAM protection technique is best for a DC setup in the lack of this framework
Future Work

• Evaluate TCO for more online and offline services

• Explore the cost-benefits of new ECC schemes

• Validation of the framework by using detailed logs from a real DC
Thanks!

MAHALO!

AMPRA tool download site:
http://www2.cs.ucy.ac.cy/carch/xi/ampra_tco.php