

Modeling the Implications of DRAM Failures and Protection Techniques on Datacenter TCO

Panagiota Nikolaou¹, Yiannakis Sazeides¹, Lorena Ndreu¹, Marios Kleanthous²

¹University of Cyprus, ²MAP S.Platis

Today's Datacenters

> 510,000 DC in all over the world [Emerson, 2011]

Large scale Datacenters: >10,000 commodity servers

> 285 Million Sqft [Emerson, 2011]

Many Million \$ per month

Datacenter Cost

[Analysis using COST-ET tool, D. Hardy 2013]
P. Nikolaou

DRAM Protection Cost

Do we need DRAM protection?

- Google Failure Study [Barroso, 2009]
- DRAM large field studies [v. Shridharan 2012, 2013]

DRAM protection is essential!!

DRAM protection choices

ChipkillDC

Cost	+
Reliability	+++
Performance	+

ChipkillSC

Cost	++
Reliability	++
Performance	++

SECDED

Cost	+++
Reliability	+
Performance	+++

DRAM protection selection

^{*}Analyzer of Memory Protection and Failures Implications on TCO (AMPRA tool), site: http://www2.cs.ucy.ac.cy/carch/xi/ampra_tco.php

Our Proposition & our Contribution

Related work

 [Y. Luo DSN 2014] Proposes and analyzes cost of a heterogeneous memory protection scheme

Differences:

- Performance, power implications of memory protection techniques
- Co-located services
- Datacenter cost
- No other related work considers various parameters

Outline

- Proposed Framework (AMPRA tool)
- Use Case
- Experimental Framework
- Results
- Conclusions

Proposed framework (AMPRA tool)

Outline

- Proposed Framework (AMPRA tool)
- Use Case
- Experimental Framework
- Results
- Conclusions

Use Case

Bandwidth vs. Latency vs. Reliability vs. Power

Chipkill with Dual Channel Implementation (ChipkillDC)
Chipkill with Single Channel Implementation (ChipkillSC)
16 ECC bits for 128 Data bits-144 bit codeword

FIT model

ChipkillDC:

- Detects all the errors in 2 devices
- Corrects all the errors in 1 device

ChipkillSC:

- Cannot detect all the errors in 2 devices
- Corrects all the errors in 1 device

ChipkillDC can provide better Reliability than ChipkillSC

Performance and Power model

How it works: (ChipkillDC)

Read

- •Requires accessing two DIMMs
- •Codeword in a single burst
- Latency short
- •Low Bandwidth
- High Power Consumption

Performance and Power model

How it works: (ChipkillSC)

Read

- •Requires accessing one DIMM
- Codeword in two bursts
- Latency long
- •High Bandwidth 🙂
- •Less Power Consumption

Design Space

	ChipkillSC	ChipkillDC
Reliability	Cannot detect all the errors in 2 devices Corrects all the errors in 1 device	Detect all the errors in 2 devices Corrects all the errors in 1 device
Bandwidth	Access one DIMM	Access two DIMMs
Latency	Codeword in two bursts	Codeword in one burst
Power	Access one DIMM	Access two DIMMs

What happens with the Cost?

- Application characteristics
 - Memory intensive, compute intensive
- Co-running applications

Online and Offline Services

Online Services: High QoS requirements

Offline Services: Do not have QoS constrains

Co-location: Improve server utilization and reduce TCO

Outline

- Proposed Framework (AMPRA tool)
- Use Case
- Experimental Framework
- Results
- Conclusions

Experimental Framework

DRAM Protection Implications on Performance

WS: Web Search

MR500: Map Reduce 500MB

MR49000: Map Reduce 49000MB

DRAM Protection Implications on Power

WS: Web Search

MR500: Map Reduce 500MB

MR49000: Map Reduce 49000MB

DRAM Protection Implications on Cost

WS: Web Search

MR500: Map Reduce 500MB

MR49000: Map Reduce 49000MB

- Underlines the importance of understanding the usage and characteristics of all the services to be run in a DC before making memory protection design choices
- Highlights the need of proposed framework !!

Usage

Datacenter designers: Select processor and protection technique

- Researchers: Investigate the implications of new ideas related to DRAM failures and DRAM protection techniques
- Service providers: Find how to charge for running offline services and to makeup for the increase in TCO due to co-location

More in the paper

- Detailed explanation of each model
- DRAM grades and how affect TCO

Results for other protection techniques (SECDED)

Power and performance results for more applications

Conclusions

- DRAM is one of the dominant cost consumers in a DC
- Different protection techniques have different TCO implications
- Framework to encapsulates all the parameters and tries to determine the cost-effective protection technique for a DC
- Highlight the need of the framework
 - It is not straightforward to decide which DRAM protection technique is best for a DC setup in the lack of this framework

Future Work

- Evaluate TCO for more online and offline services
- Explore the cost-benefits of new ECC schemes
- Validation of the framework by using detailed logs from a real DC

AMPRA tool download site:

http://www2.cs.ucy.ac.cy/carch/xi/ampra_tco.php