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•  Unstructured Data: No pre-defined data model, text-intensive. 
•  Growing applications of “Big Data”; Dataset scaling in size, and 

sophistication 
•  Increasingly “real time” 
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Finite Automata: a Powerful Tool for 
Pattern Matching 
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Why Automata Processing has Poor 
Performance on CPU/GPU? 
• Worst case for modern processors 

•  Sequential memory indirections 
•  Unpredictable accesses / branches 
•  Short data items 
•  Memory hierarchy 
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Importance of General-purpose FA Processing 
FA Model Innovation 
•  DFA, NFA (classical) 
•  A-DFA, delay-DFA [SIGCOMM’06] 
•  Hybrid-FA [CoNEXT’07] 
•  XFA [SIGCOMM’08] 
•  Counting-FA [CoNEXT’08] 
•  SFA [INFOCOM’11] 
•  Dual-FA [ToC’13] 
•  JFA [JSAC’14] 
•  ...... 

To date, no such general-purpose architecture exists! 
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Goals for a Unified Automata 
Processor (UAP) 

• General-purpose:  
•  support all finite-automata models 

• High Performance:  
•  fast enough to match the data movement speed in the 

memory system 
•  low enough power to fit anywhere in the system 

• Ease of Use:  
•  same programming model as CPU 
•  same way as people use regex library 
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General-purpose and Flexibility 
• Detailed Analysis of 

Dozens of Models 
•  identify key data 

representations 
•  Identify common mechanism 

requirements 
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patterns (a+bc, bcd+ and cde). In the two diagrams, states 
active after processing text aabc are colored gray. In the 
NFA, the transition complexity is bounded by the number of 
symbols in the pattern-set. In the DFA, every state presents 
one transition for each character in the alphabet (∑). Each 
DFA state corresponds to a set of NFA states that can be 
simultaneously active; therefore, the number of states in a 
DFA equivalent to an N-state NFA can potentially be 2N. 
Previous work [29, 33-36] has shown that this so-called 
state explosion happens only in the presence of complex 
patterns (typically those containing bounded and unbounded 
repetitions of large character sets). Since each DFA state 
corresponds to a set of simultaneously active NFA states, 
DFAs ensure minimal per-character processing (only one 
state transition is taken for each input character). 

2.2 Architecture for Finite Automata Models 

Many existing proposals extend DFA models on traditional 
computing systems, focusing on (i) transition compression 
to reduce DFA memory footprint, and (ii) new automata 
models that reduce the number of states required. Examples 
of transition compression techniques include: alphabet 
reduction [31, 44, 53], run-length encoding [44], default 
transition compression [31, 32, 54], state merging [55] and 
delta-FAs [56]. These representations do not alter the 
number of states in the DFA, but reduce the number of 
transitions, and do so by exploiting the transition 
redundancy present for realistic DFA workloads. Novel 
finite automata models include: multiple-DFAs [29, 57], 
hybrid-FAs [33], history-based-FAs [35], XFAs [36], 
counting-FAs [34], JFAs [37], SFAs [39] and dual-FAs 
[38]. These alternative automata models aim to avoid or 
mitigate the state explosion problem in traditional DFA 
representations. While reducing the resource requirements 
of NFAs and DFAs, these automata models have equivalent 
expressive power.  

While there are tens of published variants of FA 
models, nearly all of them extend traditional NFAs and 
DFAs with a small number of features: conditional 
transitions, conditional actions, transitions causing 
immediate state shift (e.g., default transitions in [31, 32, 54] 
and jump-transitions in JFAs [37]), and counters. All these 
features optimize FA models for particular pattern 
structures. In addition, some of these automata allow 

concurrent state activations, whereas others permit only one 
active state at a time during traversal.  

Our prior work showed that CPU and GPU 
implementations execute 40-50 instructions per FA 
transition, so a first requiremement is mechanisms that that 
implement basic transitions for DFA efficiently. 

Figure 2 summarizes our further analysis of the use of 
extended FA features on a broad range of finite automata 
models.  For example, conditional transitions are common 
to counting-FAs and history-based-FAs. Conditional actions 
are additionally used by XFAs and JFAs. The immediate 
state shift functionality is common to D2FAs, A-DFAs, 
JFAs, SFAs, and dual-FAs. NFAs, counting-NFAs, hybrid-
FAs, SFAs and dual-FAs allow multiple state activations. 
When distilled down, these five features are the mechanisms 
needed to efficiently implement all twelve of these models 
(and a much larger published set).  

By understanding these key mechanisms and selecting a 
smaller set of six exemplar finite automata models that 
cover many interesting combinations of them (DFAs, NFAs, 
A-DFAs, counting-DFAs, counting-NFAs, and JFAs), we 
create a representative and demanding breadth of finite 
automata models on which to evaluate UAP’s generality as 
a unified automata architecture, enabling automata 
innovation to elevate to the software level. In Section 5, we 
will use this representative subset to evaluate the UAP 
architecture and design. 
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Figure'1:' (a)'NFA'and' (b)'DFA'accepting' regular'expressions'
a+bc,'bcd+' and' cde.' Accepting' states' are' bold.' States' active'
after' processing' text' aabc' are' colored' gray.' In' the' NFA,' ∑(
represents' the' whole' alphabet.' In' the' DFA,' state' 4' has' an'
incoming'transition'on'c.'

Conditional)
transitions

Conditional
actions

Immediate
state shift

Counters

Multi4activate
states/FA)
collaboration

DFA

NFA

D2FA

A%DFA

Counting%DFA

Counting%NFA

Hybrid4FA

History4based4FA

XFA

JFA

SFA

Dual4FA

Mechanisms Finite)Automata)Model

Deterministic
Transitions Used)by

All)FA
Models

 
Figure'2:'Mechanisms' required'by'different' finite'automata'
models.' The' six' exemplars' used' to' evaluate' our' proposed'
UAP'are'highlighted'in'bold/green.''

•  Transition variety is 
the key 

•  Transition types 
define different FA 
models 
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Support Transition Diversity  
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UAP Memory Layout 

Signature(8) Target(12) Type(4) Attach(8) Transition 
Primitive 

Action Unused(7) Opcode(4) DstReg(2) SrcReg(2) Imm(16) Last(1) 

Primitive A 

Primitive B 

Action A1 

Action A2 

Primitive C 

Accept Info 

Action C1 

Accept Info 

Transition A 

Transition B 

Transition C 

•  Using EffCLiP algorithm1 
to pack transitions and 
actions 

1. Y. Fang, A. Lehane, A. A. Chien, “EffCLiP: Efficient Coupled-linear 
Packing for Finite Automata”, University of Chicago Technical Report 
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Vector Parallelism and Multi-step Execution 
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1 optimizes for a popular state with many self-transitions 
arising from common regular expression features such as 
“.*”, allowing the creation of a virtual state and a self-
majority transition. Version 2 supports non-consuming 
default transitions used by A-DFA and D2FA 
representations. Finally, Version 3 supports deactivation of 
a state, as required by NFA models.  The chainStateAddr 
field is used to support multiple state activations, also 
required by NFA models. Finally, the statementAddr field is 
used to connect a transition with the associated statements. 

A single transition format allows the UAP model 
extreme flexibility, not only supporting the full range of FA 
models, but allowing hybridization on a per-transition basis. 
Directly, all of the different FA models can be supported 
simultaneously in a single finite automaton. 

3.3 Implementation 

UAP’s implementation connects 64 parallel lanes to a vector 
register file (see Figure 6). The parallel vector interface can 
activate 64 lanes, each executing a finite automaton.  These 
lanes can be associated with 1-64 input streams. A vector 
interface also enables parallel testing for acceptances.  Each 
UAP lane is associated with its own bank of the local 
memory that provides single memory cycle access for 
transitions, statements, and actions.  As shown in Figure 5, 
transitions require 64 bits, while statements and action 
require 32 bits.  

Each UAP lane (see Figure 7) has four key elements: 1) 
a register file holds the current state of the finite-automata 
execution and associated counters + some status bits, 2) 
state sequence logic that efficiently implements transitions, 
statements, and actions, 3) a queue and a counter stack that 
holds a set of current states for multi-activation automata 
models (e.g. NFAs, c-NFAs), and 4) an interface to a bank 
of on-chip local memory.  Each lane accesses only a single 
bank, and thus can be placed close to it to minimize access 
latency and energy.  A combining function in the queue 
efficiently implements activation convergence. On-chip 
local memories are an increasingly popular approach for a 
wide range of high performance computing chips [59, 60] 
because of their ability to provide high bandwidth memory 
access.  

In case of simple automata models, a UAP lane can 
process a traversal step in a single memory cycle. Operating 

at 1Ghz, the 64 UAP lanes have a theoretical peak of 510 
Gbps.  More complex models (including statements and 
actions) may take multiple cycles. The UAP lane can 
currently process only one state activation per cycle: the 
handling of multiple state activations requires multiple 
cycles. 

4. Methodology  
4.1 Workloads and Software 
We compiled regular expression patterns to the UAP format, 
then executed each of the considered finite automata models 
on publicly available workloads, using a single and multiple 
input streams. In all cases, we selected the workloads so as 
to stress the unique features of the finite automata model in 
consideration (e.g. counting predicates for counting-FAs). 
Whenever possible, we chose pattern-sets that allowed 
direct comparisons with published results [43, 61, 62]. 
These workloads are summarized in Table 2. Among these, 
spyware is a 462-pattern dataset from Snort NIDS [26]. EM, 
range-fR, and dotstar-fDS are synthetically generated datasets 
consisting of exact-match strings, patterns containing a 
fraction fR of character sets, and patterns containing a 
fraction fDS of unbounded repetitions of wildcards (aka “dot-
star” terms), respectively. By causing different degrees of 
state explosion, these features affect the complexity of the 
resulting automata [29]. All these synthetic datasets consist 
of 1,000 regular expressions (patterns); the only exception is 
dotstar0.9, which contains 300 patterns. Scope is a 
proprietary dataset generated from trace data taken from 
analog-to-digital converters. Huffman [62] consists of 34 
Huffman trees derived from the 34 most downloaded books 
(as of July 4th, 2013) from the Project Gutenberg. The RLE 
workload is a run-length encoding compression scheme with 
a 257-state counting-NFA that has 128 counting states. The 
traces used for RLE have a contiguous repeated symbol 
fraction ranging from 0-100 percent. The input streams used 
for network monitoring workloads were synthetically 
generated using the tool described in [61]. This tool allows 
producing traces that trigger different FA traversal patterns. 
This is done by tuning a parameter called pM, which 
indicates the probability of matching patterns in the set (and, 
as a consequence, the locality of the FA traversal). In the 
generation, we used 4 pM values: 0.35, 0.55, 0.75, and 0.95. 
Each input stream (trace) has a 64 KB size. To implement 
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Use Regex Library for FA Processing 
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Code to do FA Processing 
#include <regex.h>
... Your Program’s Code ... 
regex_t regex;
int ret;
regcomp(&regex, ”^MICRO[0-9]{4}.*UAP", 0);
ret = regexec(&regex, “abcdefghijklmn”, 0, NULL, 0);
if (!ret) {
    puts("Match");
}
else if (ret == REG_NOMATCH) {
    puts("No match");
}
... Your Program’s Code ... 
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Exploiting UAP in Software System 
#include <regex.h>
... Your Program’s Code ... 
regex_t regex;
int ret;
regcomp(&regex, ”^MICRO[0-9]{4}.*UAP", 0);
ret = regexec(&regex, “abcdefghijklmn”, 0, NULL, 0);
if (!ret) {
    puts("Match");
}
else if (ret == REG_NOMATCH) {
    puts("No match");
}
... Your Program’s Code ... 
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Exploiting UAP in Software System 
#include <regex.h>
... Your Program’s Code ... 
regex_t regex;
int ret;
regcomp(&regex, ”^MICRO[0-9]{4}.*UAP", 0);
ret = regexec(&regex, “abcdefghijklmn”, 0, NULL, 0);
if (!ret) {
    puts("Match");
}
else if (ret == REG_NOMATCH) {
    puts("No match");
}
... Your Program’s Code ... 

… load Compiled FA descriptions …
//  Initialize UAP, Clear acceptance flags
 write_state_regs(initial states, memory offsets)
 vec64 = 0;  
// Looping consuming 256 symbols per iteration
while (all_zeros(vec64)){        
     … load stream data into vector registers …
     traverse(0, 256, vec64);
     complete_traverse(); 
 }
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Evaluation 
• Workload Datasets

• Network Intrusion Detection (DFA, A-DFA, JFA, A-JFA, NFA)
• Compression/Decompression (DFA, RLE-DFA)
•  Signal Triggering (c-DFA, c-NFA)
• Database Query (flat-JSON-NFA)

• Simulation
• Cycle-accurate Logic, Local Memory, Cache, DRAM 
• Detailed 32nm TSMC design, UAP runs @1.2GHz
•  Energy-accurate modeling of each element
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Instruction Count 

Vector Parallelism and Multi-step Execution significantly 
reduce instruction counts for ALL FA MODELS 
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Line Rate (single stream performance) 

UAP@1.2GHz (DFA) ~ 9.1Gbps 
227x/70x best published CPU/GPU result on realistic dataset!  
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Power of General Purpose FA Computation 

General-purpose FA processing enables UAP to outperform 
IBM RegX by 5x and CPU/GPU by 100x .  
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Area and On-chip Power Breakdown 

64-lane UAP 2.2 mm2, 507 mW 
Half size of a single Cortex A-9 core logic 
Half power of a single Cortex A-9 core 
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Related Work 
•  Software Implementation

•  CPU: [Becchi@ANCS09, Mytkowicz@ASPLOS14, Zhao@ASPLOS15, 
Cameron@PACT14], best throughput 3Gbps (small datasets) 

•  GPU: [Yu@CF13, Zu@PPoPP12], best throughput 13Gbps (small datasets) 

• Customized Hardware
•  Single model 

•  DFA: ASIC [Lunteren@MICRO12, Brodie@ISCA06, Tan@ISCA05], TCAM 
[Liu@USENIX Security10], best line rate 9.2 Gbps

•  NFA: MicronAP [Dlugosch@TPDS14], line rate 1 Gbps
•  Multiple models

•  FPGA [Yang@ToC12], line rate 1~4 Gbps

• UAP combines general purpose FA computing with top performance 
•  DFA line rate 9.1Gbps
•  Significant throughput DFA (450Gbps), NFA (250 Gbps)
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Summary 
•  UAP is a general-purpose FA processing architecture 
•  UAP increases performance by >100x vs CPUs and GPUs; 

Matches customized ASIC and FPGA implementations 
•  UAP is small and low-power, so it can be easily integrated 

across future computing systems 
•  UAP is easy to use. It makes software processing of 

unstructured data using FA’s efficient and pervasively usable 
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