
FAST SUPPORT FOR UNSTRUCTURED
DATA PROCESSING: THE UNIFIED
AUTOMATA PROCESSOR

Yuanwei Fang, Tung T. Hoang, Michela Becchi, Andrew A. Chien

Unstructured Data Applications

Voice
Assistant

Web Search

Intrusion
Detection

XML Mining/
Parsing

Motif
Searching

Compress/
Decompress

Text Data Mining

Signal
Triggering

•  Unstructured Data: No pre-defined data model, text-intensive.
•  Growing applications of “Big Data”; Dataset scaling in size, and

sophistication
•  Increasingly “real time”

copyright 2015, Yuanwei Fang, Andrew A. Chien

Finite Automata: a Powerful Tool for
Pattern Matching

a

0

1

4

7

2

5

8

3

6

9

a
b c

b c d
d

c

d e

∑

(a)

c: from 1,3,5-10

0

1

4

8

2

5

9

3

6

10

a
b c

b c d

c
d e

7

d

e

d

d
remaining
transitions b: from 2-10

a: from 1-10
(b)

NFA DFA
Search Pattern: a+bc, bcd+, cde

copyright 2015, Yuanwei Fang, Andrew A. Chien

Why Automata Processing has Poor
Performance on CPU/GPU?
• Worst case for modern processors

•  Sequential memory indirections
•  Unpredictable accesses / branches
•  Short data items
•  Memory hierarchy

2000x
340x

0

20

40

60

80

100

CPU(Xeon-E5620) GPU (GTX-480) DDR3 Bandwidth

Th
ro

ug
hp

ut
 (G

bp
s)

copyright 2015, Yuanwei Fang, Andrew A. Chien

Importance of General-purpose FA Processing
FA Model Innovation
•  DFA, NFA (classical)
•  A-DFA, delay-DFA [SIGCOMM’06]
•  Hybrid-FA [CoNEXT’07]
•  XFA [SIGCOMM’08]
•  Counting-FA [CoNEXT’08]
•  SFA [INFOCOM’11]
•  Dual-FA [ToC’13]
•  JFA [JSAC’14]
• 

To date, no such general-purpose architecture exists!

copyright 2015, Yuanwei Fang, Andrew A. Chien

Goals for a Unified Automata
Processor (UAP)

• General-purpose:
•  support all finite-automata models

• High Performance:
•  fast enough to match the data movement speed in the

memory system
•  low enough power to fit anywhere in the system

• Ease of Use:
•  same programming model as CPU
•  same way as people use regex library

copyright 2015, Yuanwei Fang, Andrew A. Chien

General-purpose and Flexibility
• Detailed Analysis of

Dozens of Models
•  identify key data

representations
•  Identify common mechanism

requirements

ISCA Submission #134– Confidential Draft – Do Not Distribute!!

3

patterns (a+bc, bcd+ and cde). In the two diagrams, states
active after processing text aabc are colored gray. In the
NFA, the transition complexity is bounded by the number of
symbols in the pattern-set. In the DFA, every state presents
one transition for each character in the alphabet (∑). Each
DFA state corresponds to a set of NFA states that can be
simultaneously active; therefore, the number of states in a
DFA equivalent to an N-state NFA can potentially be 2N.
Previous work [29, 33-36] has shown that this so-called
state explosion happens only in the presence of complex
patterns (typically those containing bounded and unbounded
repetitions of large character sets). Since each DFA state
corresponds to a set of simultaneously active NFA states,
DFAs ensure minimal per-character processing (only one
state transition is taken for each input character).

2.2 Architecture for Finite Automata Models

Many existing proposals extend DFA models on traditional
computing systems, focusing on (i) transition compression
to reduce DFA memory footprint, and (ii) new automata
models that reduce the number of states required. Examples
of transition compression techniques include: alphabet
reduction [31, 44, 53], run-length encoding [44], default
transition compression [31, 32, 54], state merging [55] and
delta-FAs [56]. These representations do not alter the
number of states in the DFA, but reduce the number of
transitions, and do so by exploiting the transition
redundancy present for realistic DFA workloads. Novel
finite automata models include: multiple-DFAs [29, 57],
hybrid-FAs [33], history-based-FAs [35], XFAs [36],
counting-FAs [34], JFAs [37], SFAs [39] and dual-FAs
[38]. These alternative automata models aim to avoid or
mitigate the state explosion problem in traditional DFA
representations. While reducing the resource requirements
of NFAs and DFAs, these automata models have equivalent
expressive power.

While there are tens of published variants of FA
models, nearly all of them extend traditional NFAs and
DFAs with a small number of features: conditional
transitions, conditional actions, transitions causing
immediate state shift (e.g., default transitions in [31, 32, 54]
and jump-transitions in JFAs [37]), and counters. All these
features optimize FA models for particular pattern
structures. In addition, some of these automata allow

concurrent state activations, whereas others permit only one
active state at a time during traversal.

Our prior work showed that CPU and GPU
implementations execute 40-50 instructions per FA
transition, so a first requiremement is mechanisms that that
implement basic transitions for DFA efficiently.

Figure 2 summarizes our further analysis of the use of
extended FA features on a broad range of finite automata
models. For example, conditional transitions are common
to counting-FAs and history-based-FAs. Conditional actions
are additionally used by XFAs and JFAs. The immediate
state shift functionality is common to D2FAs, A-DFAs,
JFAs, SFAs, and dual-FAs. NFAs, counting-NFAs, hybrid-
FAs, SFAs and dual-FAs allow multiple state activations.
When distilled down, these five features are the mechanisms
needed to efficiently implement all twelve of these models
(and a much larger published set).

By understanding these key mechanisms and selecting a
smaller set of six exemplar finite automata models that
cover many interesting combinations of them (DFAs, NFAs,
A-DFAs, counting-DFAs, counting-NFAs, and JFAs), we
create a representative and demanding breadth of finite
automata models on which to evaluate UAP’s generality as
a unified automata architecture, enabling automata
innovation to elevate to the software level. In Section 5, we
will use this representative subset to evaluate the UAP
architecture and design.

a

0

1

4

7

2

5

8

3

6

9

a
b c

b c d
d

c

d e

∑

(a)

c: from 1,3,5-10

0

1

4

8

2

5

9

3

6

10

a
b c

b c d

c
d e

7

d

e

d

d
remaining
transitions b: from 2-10

a: from 1-10
(b)

Figure'1:' (a)'NFA'and' (b)'DFA'accepting' regular'expressions'
a+bc,'bcd+' and' cde.' Accepting' states' are' bold.' States' active'
after' processing' text' aabc' are' colored' gray.' In' the' NFA,' ∑(
represents' the' whole' alphabet.' In' the' DFA,' state' 4' has' an'
incoming'transition'on'c.'

Conditional)
transitions

Conditional
actions

Immediate
state shift

Counters

Multi4activate
states/FA)
collaboration

DFA

NFA

D2FA

A%DFA

Counting%DFA

Counting%NFA

Hybrid4FA

History4based4FA

XFA

JFA

SFA

Dual4FA

Mechanisms Finite)Automata)Model

Deterministic
Transitions Used)by

All)FA
Models

Figure'2:'Mechanisms' required'by'different' finite'automata'
models.' The' six' exemplars' used' to' evaluate' our' proposed'
UAP'are'highlighted'in'bold/green.''

•  Transition variety is
the key

•  Transition types
define different FA
models

copyright 2015, Yuanwei Fang, Andrew A. Chien

Support Transition Diversity

a a

epsilon

a a
cnt++ jump

Approach: Transition Decomposition

a a, TRUE

a, FALSE

Transition Primitive Action

Example:
a

cnt++

a
cnt++

copyright 2015, Yuanwei Fang, Andrew A. Chien

UAP Memory Layout

Signature(8) Target(12) Type(4) Attach(8) Transition
Primitive

Action Unused(7) Opcode(4) DstReg(2) SrcReg(2) Imm(16) Last(1)

Primitive A

Primitive B

Action A1

Action A2

Primitive C

Accept Info

Action C1

Accept Info

Transition A

Transition B

Transition C

•  Using EffCLiP algorithm1
to pack transitions and
actions

1. Y. Fang, A. Lehane, A. A. Chien, “EffCLiP: Efficient Coupled-linear
Packing for Finite Automata”, University of Chicago Technical Report

copyright 2015, Yuanwei Fang, Andrew A. Chien

Basic UAP Engine
A

ct
io

n

Tr
an

si
tio

n
P

rim
iti

ve

copyright 2015, Yuanwei Fang, Andrew A. Chien

Vector Parallelism and Multi-step Execution

Lane0 (DFA)

Vector Execution

input:’a’

input:’b’

input:’a’

teleport:epsilon

input:’b’

input:’a’

action:JUMP

input:’b’

input:’a’

input:’b’

action: cnt+
+

Lane1 (NFA) Lane2 (JFA) Lane3 (c-DFA)

M
ul

ti-
st

ep
(s

ym
bo

l)
Ex

ec
ut

io
n

done

done done done

copyright 2015, Yuanwei Fang, Andrew A. Chien

UAP System Architecture ISCA Submission #134– Confidential Draft – Do Not Distribute!!

6

1 optimizes for a popular state with many self-transitions
arising from common regular expression features such as
“.*”, allowing the creation of a virtual state and a self-
majority transition. Version 2 supports non-consuming
default transitions used by A-DFA and D2FA
representations. Finally, Version 3 supports deactivation of
a state, as required by NFA models. The chainStateAddr
field is used to support multiple state activations, also
required by NFA models. Finally, the statementAddr field is
used to connect a transition with the associated statements.

A single transition format allows the UAP model
extreme flexibility, not only supporting the full range of FA
models, but allowing hybridization on a per-transition basis.
Directly, all of the different FA models can be supported
simultaneously in a single finite automaton.

3.3 Implementation

UAP’s implementation connects 64 parallel lanes to a vector
register file (see Figure 6). The parallel vector interface can
activate 64 lanes, each executing a finite automaton. These
lanes can be associated with 1-64 input streams. A vector
interface also enables parallel testing for acceptances. Each
UAP lane is associated with its own bank of the local
memory that provides single memory cycle access for
transitions, statements, and actions. As shown in Figure 5,
transitions require 64 bits, while statements and action
require 32 bits.

Each UAP lane (see Figure 7) has four key elements: 1)
a register file holds the current state of the finite-automata
execution and associated counters + some status bits, 2)
state sequence logic that efficiently implements transitions,
statements, and actions, 3) a queue and a counter stack that
holds a set of current states for multi-activation automata
models (e.g. NFAs, c-NFAs), and 4) an interface to a bank
of on-chip local memory. Each lane accesses only a single
bank, and thus can be placed close to it to minimize access
latency and energy. A combining function in the queue
efficiently implements activation convergence. On-chip
local memories are an increasingly popular approach for a
wide range of high performance computing chips [59, 60]
because of their ability to provide high bandwidth memory
access.

In case of simple automata models, a UAP lane can
process a traversal step in a single memory cycle. Operating

at 1Ghz, the 64 UAP lanes have a theoretical peak of 510
Gbps. More complex models (including statements and
actions) may take multiple cycles. The UAP lane can
currently process only one state activation per cycle: the
handling of multiple state activations requires multiple
cycles.

4. Methodology
4.1 Workloads and Software
We compiled regular expression patterns to the UAP format,
then executed each of the considered finite automata models
on publicly available workloads, using a single and multiple
input streams. In all cases, we selected the workloads so as
to stress the unique features of the finite automata model in
consideration (e.g. counting predicates for counting-FAs).
Whenever possible, we chose pattern-sets that allowed
direct comparisons with published results [43, 61, 62].
These workloads are summarized in Table 2. Among these,
spyware is a 462-pattern dataset from Snort NIDS [26]. EM,
range-fR, and dotstar-fDS are synthetically generated datasets
consisting of exact-match strings, patterns containing a
fraction fR of character sets, and patterns containing a
fraction fDS of unbounded repetitions of wildcards (aka “dot-
star” terms), respectively. By causing different degrees of
state explosion, these features affect the complexity of the
resulting automata [29]. All these synthetic datasets consist
of 1,000 regular expressions (patterns); the only exception is
dotstar0.9, which contains 300 patterns. Scope is a
proprietary dataset generated from trace data taken from
analog-to-digital converters. Huffman [62] consists of 34
Huffman trees derived from the 34 most downloaded books
(as of July 4th, 2013) from the Project Gutenberg. The RLE
workload is a run-length encoding compression scheme with
a 257-state counting-NFA that has 128 counting states. The
traces used for RLE have a contiguous repeated symbol
fraction ranging from 0-100 percent. The input streams used
for network monitoring workloads were synthetically
generated using the tool described in [61]. This tool allows
producing traces that trigger different FA traversal patterns.
This is done by tuning a parameter called pM, which
indicates the probability of matching patterns in the set (and,
as a consequence, the locality of the FA traversal). In the
generation, we used 4 pM values: 0.35, 0.55, 0.75, and 0.95.
Each input stream (trace) has a 64 KB size. To implement

Figure'6:'UAP'Design'uses'a'Vector'interface'for'Parallelism'

RISC%Core

Vector%Registers%

Local
Memory%
Bank

UAP%
Lane

Local
Memory%
Bank

UAP%
Lane

.".".

Local
Memory%
Bank

UAP%
Lane

Local
Memory%
Bank

UAP%
Lane

.".".

64%UAP%Lanes
64%Local%Memory%Banks

64x%2048bit

32Cbit%processor

Figure'7:''UAP'Lane'implements'efficient'FA'state'transitions'

(2 ports)

copyright 2015, Yuanwei Fang, Andrew A. Chien

Use Regex Library for FA Processing

High level applications

Software Compiler

Link

“^MICRO[0-9]{4}.*UAP”

Regular
Expression
Compiler

Regex
Runtime
Library

Computer

Regular Expressions

Regex

copyright 2015, Yuanwei Fang, Andrew A. Chien

Computer

Use UAP for FA Processing

High level applications

Software Compiler

Link

“^MICRO[0-9]{4}.*UAP”

UAP
Compiler

UAP

Regular Expressions

UAP operations

UAP stub Regex

copyright 2015, Yuanwei Fang, Andrew A. Chien

Code to do FA Processing
#include <regex.h>
... Your Program’s Code ...
regex_t regex;
int ret;
regcomp(®ex, ”^MICRO[0-9]{4}.*UAP", 0);
ret = regexec(®ex, “abcdefghijklmn”, 0, NULL, 0);
if (!ret) {
 puts("Match");
}
else if (ret == REG_NOMATCH) {
 puts("No match");
}
... Your Program’s Code ...

copyright 2015, Yuanwei Fang, Andrew A. Chien

Exploiting UAP in Software System
#include <regex.h>
... Your Program’s Code ...
regex_t regex;
int ret;
regcomp(®ex, ”^MICRO[0-9]{4}.*UAP", 0);
ret = regexec(®ex, “abcdefghijklmn”, 0, NULL, 0);
if (!ret) {
 puts("Match");
}
else if (ret == REG_NOMATCH) {
 puts("No match");
}
... Your Program’s Code ...

copyright 2015, Yuanwei Fang, Andrew A. Chien

Exploiting UAP in Software System
#include <regex.h>
... Your Program’s Code ...
regex_t regex;
int ret;
regcomp(®ex, ”^MICRO[0-9]{4}.*UAP", 0);
ret = regexec(®ex, “abcdefghijklmn”, 0, NULL, 0);
if (!ret) {
 puts("Match");
}
else if (ret == REG_NOMATCH) {
 puts("No match");
}
... Your Program’s Code ...

… load Compiled FA descriptions …
// Initialize UAP, Clear acceptance flags
 write_state_regs(initial states, memory offsets)
 vec64 = 0;
// Looping consuming 256 symbols per iteration
while (all_zeros(vec64)){
 … load stream data into vector registers …
 traverse(0, 256, vec64);
 complete_traverse();
 }

copyright 2015, Yuanwei Fang, Andrew A. Chien

Evaluation
• Workload Datasets

• Network Intrusion Detection (DFA, A-DFA, JFA, A-JFA, NFA)
• Compression/Decompression (DFA, RLE-DFA)
•  Signal Triggering (c-DFA, c-NFA)
• Database Query (flat-JSON-NFA)

• Simulation
• Cycle-accurate Logic, Local Memory, Cache, DRAM
• Detailed 32nm TSMC design, UAP runs @1.2GHz
•  Energy-accurate modeling of each element

copyright 2015, Yuanwei Fang, Andrew A. Chien

Instruction Count

Vector Parallelism and Multi-step Execution significantly
reduce instruction counts for ALL FA MODELS

copyright 2015, Yuanwei Fang, Andrew A. Chien

Line Rate (single stream performance)

UAP@1.2GHz (DFA) ~ 9.1Gbps
227x/70x best published CPU/GPU result on realistic dataset!

copyright 2015, Yuanwei Fang, Andrew A. Chien

Power of General Purpose FA Computation

General-purpose FA processing enables UAP to outperform
IBM RegX by 5x and CPU/GPU by 100x .

copyright 2015, Yuanwei Fang, Andrew A. Chien

Area and On-chip Power Breakdown

64-lane UAP 2.2 mm2, 507 mW
Half size of a single Cortex A-9 core logic
Half power of a single Cortex A-9 core

copyright 2015, Yuanwei Fang, Andrew A. Chien

Related Work
•  Software Implementation

•  CPU: [Becchi@ANCS09, Mytkowicz@ASPLOS14, Zhao@ASPLOS15,
Cameron@PACT14], best throughput 3Gbps (small datasets)

•  GPU: [Yu@CF13, Zu@PPoPP12], best throughput 13Gbps (small datasets)

• Customized Hardware
•  Single model

•  DFA: ASIC [Lunteren@MICRO12, Brodie@ISCA06, Tan@ISCA05], TCAM
[Liu@USENIX Security10], best line rate 9.2 Gbps

•  NFA: MicronAP [Dlugosch@TPDS14], line rate 1 Gbps
•  Multiple models

•  FPGA [Yang@ToC12], line rate 1~4 Gbps

• UAP combines general purpose FA computing with top performance
•  DFA line rate 9.1Gbps
•  Significant throughput DFA (450Gbps), NFA (250 Gbps)

copyright 2015, Yuanwei Fang, Andrew A. Chien

Summary
•  UAP is a general-purpose FA processing architecture
•  UAP increases performance by >100x vs CPUs and GPUs;

Matches customized ASIC and FPGA implementations
•  UAP is small and low-power, so it can be easily integrated

across future computing systems
•  UAP is easy to use. It makes software processing of

unstructured data using FA’s efficient and pervasively usable

Funding Acknowledgement
•  DARPA HR0011-13-2-0014
•  NSF CCF-1421765 and CNS-1319748
•  Keysight Research
•  Synopsys Academic program

copyright 2015, Yuanwei Fang, Andrew A. Chien

