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Prediction-Guided Performance-Energy Trade-off for Interactive Applications

Interactive Applications

= Many modern applications are highly interactive
- Web browsing
- Games
 User interfaces

* These interactions have response-time requirements

= Finishing faster does not improve user experience

2/19
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Prediction-based DVFS Control

= Run jobs slower in order to save energy while
preserving user experience
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Predict and set DVFS level

= Goal: Pick DVFS level for each job to minimize energy
and meet response-time requirement
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Prediction-Guided Performance-Energy Trade-off for Interactive Applications

Execution Time Variation

= Challenge: Execution times for an application vary from job to
job
« Optimizing for the worst-case wastes energy
« Optimizing for the average-case misses deadlines
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Design Objectives

= Proactive control — History-based DVFS control is too
slow to account for variations

 Predict DVFS level based on job inputs and program state

ldecode

34 --------1-- e—e Actual
E
C|EJ32 -----------------------------------------
= ol T PID lags actual
S execution time
Sl SR TEEY OPEY VTR 4 B S g O ST TP
x
Ll

N
o
[ ¥

|
10 12 14 16 18 20
Job (Frame)

= General — applicable to a wide range of applications
= Automated — minimal programmer effort
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Prediction Approach

lJob Input and Program State
Generate
Program Features
lFeature Values
Predict Job
Execution Time

lExecution Time

[Predict Frequency]

l Frequency
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Feature Selection

= To first order, execution time correlates with number
of instructions executed

= Number of instructions depends on control flow

 Conditionals taken/not taken
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* Loop counts
» Function calls
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Instrumentation

= [nstrument program source to count these features

Conditional

Loop

Original Code Instrumented Code
4 p
if (condition) { if (condition) {
- feature[0]++;
} .
}
feature[1l] += n;
for (i=0; i<n; i++)| for (i=0; i<n; i++)
{ {
} }
while (n = n->next)|while (n = n->next)
{ {
. feature[2]++;
} .
\ } J
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Prediction-Guided Performance-Energy Trade-off for Interactive Applicatio

Prediction Slice

= Problem: Instrumented job will take as long as original

job to run

= Solution: Use program slicing to create minimal job to

calculate features

Instrument Code

Program Slice

if (x)

{
feature[0]++;
compute();

}

feature[1l] += n;
for (i=@; i<n; i++)
{

compute2();

}

if (x)
{

feature[0]++;

}

feature[1l] += n;
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Prediction Approach

l'Job Input and Program State
Generate
Program Features
lFeature Values
Predict Job
Execution Time

lExecution Time

[Predict Frequency]

l Frequency
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Prediction-Guided Performance-Energy Trade-off for Interactive Applications

Execution Time Model

= Linear model to map features to execution time

 Captures first-order effect of control flow on execution time
- Fast to evaluate

execution features prediction

time \\foefficients

Linear Model: y = X

= Use profiling data to fit model coefficients

« Multiple possible ways to calculate coefficients
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Conservative Prediction

= | east-squares prediction leads to both under-
prediction and over-prediction

« Under-prediction results in deadline misses

= \Want to skew prediction towards over-prediction
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Prediction Model

= Use convex optimization with custom objective

 Avoid under-prediction — leads to missed deadline
« Minimize features needed

execution features prediction

time \ \ coefficients

Linear Model: y = X,B

Minimize: IIPOS(XTB —WII* + allneg(X? —WII* + VII?IH

overpredict underpredict number of
features
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Prediction Approach

lJob Input and Program State
Generate
Program Features
erature Values
Predict Job
Execution Time

lExecution Time

[Predict Frequency]

l Frequency
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DVFS Model

= Need a model of how execution time scales with
frequency

 Simple linear model

t = Tmem + Ndependent/f

= Empirical data shows that this is reasonable

e r2>0.99 for all benchmarks

Execution time [ms]

1/frequency [ns]
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Full Approach

Off-line

Run-time
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Evaluation Setup

= ODROID-XU3 development board

« ARM Cortex-A7 core (100 MHz steps from 200 MHz to 1.4 GHz)
« Ubuntu 14.04

= Baseline controllers
« performance — always max frequency
* interactive — Linux governor based on utilization
* pid — PID-based controller

= Benchmarks

- web browser (uzbl)
speech recognition (pocketsphinx)
video decoding (Idecode)
games (2048, curseofwar, xpilot)
MiBench kernels (rijndael, sha)
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Results

[ performance
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3 pid

I prediction

prediction energy savings
vs. performance: 65%
vs. interactive: 38%
vs. PID: 2%

2% deadline misses for interactive
13% deadline misses for PID

0.1% deadline misses for prediction
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Conclusion

= Opportunities exist to improve the energy usage of
interactive applications

= History-based DVFS controllers are not quick enough
to respond to job-to-job variations in execution time

= Prediction-based DVFS control outperforms traditional
power governors and PID-based controllers

* Lower energy usage
« Almost no deadline misses
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