
Control Flow Coalescing on a Hybrid
Dataflow/von Neumann GPGPU

Dani Voitsechov Yoav Etsion

Technion - Israel Institute of Technology

Electrical Engineering and Computer Science Departments

Massively Parallel Computing

• Massively parallel programming models (CUDA/OpenCL) are popular in
HPC (High-Performance Computing)

• Programmer decomposes program into small tasks
• Many instances of the same task are runnable at any given time
• Decomposed code may yield fine-grain tasks that can be translated to data-flow

graphs

• GPUs yield more FLOPS per Watt
• Are integrated in systems from mobile to supercomputers

• But… GPGPUs still suffer from
von-Neumann inefficiencies

von-Neumann Inefficiencies

• The von-Neumann model carries inherent inefficiencies

• Fetch/Decode/Issue each instruction
• Even though most instructions come from loops

• Explicit storage needed for communicating values between
instructions
• Data travels back and forth between execution units and explicit storage

[Understanding Sources of Inefficiency in General-Purpose Chips, Hameed et al., ISCA10]

Component Inst.
fetch

Pipeline
registers

Data
cache

Register
file

Control FU

Power [%] 33% 22% 19% 10% 10% 6%

Alternative – Dataflow Based MT-CGRF

• Using Multi-Threaded Coarse Grain Reconfigurable Fabric (MT-CGRF)

• Eliminates von-Neumann inefficacies by using spatial computing (dataflow)

• Increases utilization by using simultaneous multithreading

• To execute a CUDA kernel on a MT-CGRF

• Transform the sequential code into a dataflow graph

• Map and route the MT-CGRF

• Stream multiple threads through the fabric

Coarse Grained Reconfigurable Array (CGRA)

int temp1 =
a[threadId] * b[threadId];
int temp2 = 5 * temp1;
if (temp2 > 255) {

temp2 = temp2 >> 3;
result[threadId] = temp2 ;}

else
result[threadId] = temp2;

a threadIdx entry b

IMM_5 S_LOAS1 S_LOAD2

ALU1_mul ALU2_mul JOIN1

IM_3 ALU4_ashl ALU3_icmp IMM_256

if_else if_then

S_SOTRE3 result S_SOTRE4

SGMF: Simultaneous Multithreading on CGRAs

• Single Graph Multiple Flows (SGMF)
• Control-dataflow graph (CDFG) is mapped

to the grid
• Maximal spatial parallelism with-in each

thread (ILP)
• Pipelining and dynamic dataflow achieve

thread-level-parallelism (TLP)

• But
• Limited to small kernels
• When all control paths are mapped the grid

cannot be fully utilized

[Single-Graph Multiple Flows: Energy Efficient Design Alternative for GPGPUs, Voitsechov and Etsion, ISCA14]

VGIW
• Vector Graph Instruction Word (VGIW)

• Basic blocks are represented as compound graph
instruction words (GIW)

• GIWs concurrently execute for vectors of threads

• von Neumann control flow dynamically
schedules VGIWs on the CGRA

• Threads are coalesced according to their
control flow and are executed concurrently

Execution and Machine Model

VGIW – A Hybrid Solution

kernel() <<8 threads>>

Prologue //BB1

if (threadIdx == either (1,3,7))

func1() //BB2

else

func2() //BB3

if (threadIdx == either (2,7))

func3() //BB4

else

func4() //BB5

Epilogue() //BB6

Code Control Flow

VGIW – A Hybrid Solution

Underutilized due to
temporal (and
spatial) division of the
HW between the BBs

Underutilized due to
spatial division of the
HW between the BBs

Fully utilized

GPGPU SGMF VGIW

Machine Model

• Each thread may take a different control path

• Control nodes update the thread vector of the next executed block for each thread

• Threads that need to execute a block are dynamically coalesced into a thread vector

• Thread vectors are stored in the Control-Vector-Table (CVT)

• Temporal Values may stay alive between blocks

• Values that are alive in-between blocks are written to the Live-value-cache (LVC)

• The LVC is accessed 10x less

frequently than a GPGPU RF

Execution Flow

Before executing BB1:
All threads execute the
prologue  Entire BB1’s
thread vector is set to 1’s.

Before executing BB1:
No temporal values are
alive  The LVC is empty.

Before executing BB1:
The MT-CGRF is configured
with the graph of BB1.

Control flow Machine state

After the execution of BB1:
The control path has
diverged, threads 1,3,8 are
registered to execute BB2
and threads 2,4-7 BB3

The prologue (BB1) has
generated a live-value
which is stored in the LVC

Before executing BB2:
The MT-CGRF is configured
with the graph of BB2.

Control flow Machine state

Execution Flow

After the execution of BB2:
threads 1,3,8 are registered
to execute BB6 and threads
2,4-7 will now execute BB3

BB2 had generated a new
live-value (LV2) for threads
1,3,8 which is stored in the
LVC

Before executing BB3:
The MT-CGRF is configured
with the graph of BB3.

Control flow Machine state

Execution Flow

After the execution of BB3:
The control path had
diverged again threads 4-6
are registered to execute
BB4 and threads 2,7 will
now execute BB4

BB3 had generated a new
live-value (LV3) for threads
2,4-7 which is stored in the
LVC

Before executing BB4:
The MT-CGRF is configured
with the graph of BB4.

Control flow Machine state

Execution Flow

Execution Flow

After the execution of BB4:
All threads but 4-6 is
registered to execute BB6,
threads 4-6 will now
execute BB5

BB4 has generated a new
live-value (LV4) for threads
2,7 which is stored in the
LVC

Before executing BB5:
The MT-CGRF is configured
with the graph of BB5.

Control flow Machine state

After the execution of BB1-
BB5 all the control path had
converged back to the
epilogue (BB6)

BB5 has generated a new
live-value (LV5) for threads
4-6 which is stored in the
LVC.

Before executing BB6:
The MT-CGRF is configured
with the graph of BB6.

LV3 was used by BB4 and
BB5 since it’s not a live any
more the space in the LVC
can be reclaimed.

Control flow Machine state

Execution Flow

Architecture

The VGIW Architecture Overview

• Coarse grained reconfigurable architecture

• Designed for massive multithreading

• A grid of computational and control units

surrounded by LDST units on the perimeter

• The nodes on the grid are connected by an interconnect

implemented by reconfigurable switches

Full Architecture

Evaluation

Methodology

 The main HW blocks were Implemented in Verilog

 Synthesized to a 65nm process
• Validate timing and connectivity
• Estimate area and power consumption

 Cycle accurate simulations based on GPGPUSim
• We Integrated synthesis results into the GPGPUSim/Wattch power model

 Benchmarks from Rodinia suite
• CUDA kernels, compiled as VGIWs

System Configuration

 In the evaluation, a processor configuration similar to the Fermi is used

• Clock: 1.4GHz

• 32x compute tiles; 32x control tiles; 16x LD/ST tiles; 16x LVU tiles; 12x SCUs

 Fermi memory system

• L1 cache: 64KB (SGMF does not have shared memory)

• L2 cache: 768KB

• Latencies as in default GPGPUSim Fermi configuration

Speedup
Speedup vs. SGMF

Speedup vs. Nvidia Fermi

Energy Efficiency
Energy efficiency vs. SGMF

Energy efficiency vs. Nvidia Fermi

Conclusions

• von-Neumann engines have inherent inefficiencies
• Throughput computing can benefit from

dataflow/spatial computing

• Scheduling blocks according to the von-Neumann semantics increases utilization
of the dataflow fabric
• Dynamic coalescing overcomes the control divergence problem

• VGIW can potentially achieve much better performance/power than current
GPGPUs
• On average x3 speedup and 33% energy saving
• Need to tune the memory system

• Greatly motivates further research
• Compilation, VGIW block granularity, memory coalescing on MT-CGRFs

Thank you!

Questions…?

