Control Flow Coalescing on a Hybrid Dataflow/von Neumann GPGPU

Dani Voitsechov Yoav Etsion
Technion - Israel Institute of Technology
Electrical Engineering and Computer Science Departments

Massively Parallel Computing

- Massively parallel programming models (CUDA/OpenCL) are popular in HPC (High-Performance Computing)
- Programmer decomposes program into small tasks
 - Many instances of the same task are runnable at any given time
 - Decomposed code may yield fine-grain tasks that can be translated to data-flow graphs
- GPUs yield more FLOPS per Watt
 - Are integrated in systems from mobile to supercomputers
- But... GPGPUs still suffer from von-Neumann inefficiencies

von-Neumann Inefficiencies

- The von-Neumann model carries inherent inefficiencies
- Fetch/Decode/Issue each instruction
 - Even though most instructions come from loops
- Explicit storage needed for communicating values between instructions
 - Data travels back and forth between execution units and explicit storage

Component	Inst. fetch	Pipeline registers		Register file	Control	FU
Power [%]	33%	22%	19%	10%	10%	6%

[Understanding Sources of Inefficiency in General-Purpose Chips, Hameed et al., ISCA10]

Alternative — Dataflow Based MT-CGRF

- Using Multi-Threaded Coarse Grain Reconfigurable Fabric (MT-CGRF)
 - Eliminates von-Neumann inefficacies by using spatial computing (dataflow)
 - Increases utilization by using simultaneous multithreading
- To execute a CUDA kernel on a MT-CGRF
 - Transform the sequential code into a dataflow graph
 - Map and route the MT-CGRF
 - Stream multiple threads through the fabric

Coarse Grained Reconfigurable Array (CGRA)

```
LABEL_entry
   int temp1 =
                                                                              threadId
   a[threadId] * b[threadId];
                                                                                      SMARTLOAD2
                                                                            SMARTLOAD1
   int temp2 = 5 * temp1;
   if (temp2 > 255) {
                                                                                       JOIN1
                                                                           ALU1_mul
      temp2 = temp2 >> 3;
                                                                                ALU2_mul
                                                                                            IMM_255
      result[threadId] = temp2;}
   else
                                                                     ALU4 ashr
                                                                                         ALU3_icmp_sgt
      result[threadId] = temp2;
                                                                      LABEL if then
                                                                               result
                                                                                         LABEL_if_else
                threadIdx
                               entry
                                                                     SMARTSTORE3
                                                                                  SMARTSTORE4
               S_LOAS1
IMM 5
                               3_LOAD2
            4LU2_mul
ALU1_mul
                               30IN1
                               ALU4_ashl
IM 3
                               <u>if</u>_then
               if_else ±
                S_SOTRE3
                               result
                                              S SOTRE4
```

SGMF: Simultaneous Multithreading on CGRAs

- Single Graph Multiple Flows (SGMF)
 - Control-dataflow graph (CDFG) is mapped to the grid
 - Maximal spatial parallelism with-in each thread (ILP)
 - Pipelining and dynamic dataflow achieve thread-level-parallelism (TLP)
- But
 - Limited to small kernels
 - When all control paths are mapped the grid cannot be fully utilized

[Single-Graph Multiple Flows: Energy Efficient Design Alternative for GPGPUs, Voitsechov and Etsion, ISCA14]

VGIW

- Vector Graph Instruction Word (VGIW)
 - Basic blocks are represented as compound graph instruction words (GIW)
 - GIWs concurrently execute for vectors of threads

 von Neumann control flow dynamically schedules VGIWs on the CGRA

 Threads are coalesced according to their control flow and are executed concurrently

Execution and Machine Model

VGIW – A Hybrid Solution

Code

```
kernel() <<8 threads>>
  Prologue //BB1
  if (threadIdx == either (1,3,7))
         func1() //BB2
  else
         func2() //BB3
         if (threadIdx == either (2,7))
             func3() //BB4
         else
             func4() //BB5
  Epilogue() //BB6
```


Control Flow

VGIW – A Hybrid Solution

GPGPU

Underutilized due to temporal (and spatial) division of the HW between the BBs SGMF

Underutilized due to spatial division of the HW between the BBs

VGIW

Fully utilized

Machine Model

- Each thread may take a different control path
 - Control nodes update the thread vector of the next executed block for each thread
 - Threads that need to execute a block are dynamically coalesced into a thread vector
 - Thread vectors are stored in the Control-Vector-Table (CVT)
- Temporal Values may stay alive between blocks
 - Values that are alive in-between blocks are written to the Live-value-cache (LVC)
 - The LVC is accessed 10x less frequently than a GPGPU RF

Control flow

Tids 1-8 BB₁ Tids 2,4-7 Tids 1,3,8 BB₃ BB₂ Tids 2,7 Tids 4-6 BB₄ BB₅ Tids 1-8 BB₆

Before executing BB1: The MT-CGRF is configured with the graph of BB1.

Before executing BB1:
All threads execute the prologue → Entire BB1's thread vector is set to 1's.

Before executing BB1: No temporal values are alive → The LVC is empty.

Control flow

Tids 1-8 BB₁ Tids 1,3,8 Tids 2,4-7 BB₃ BB₂ Tids 4-6 Tids 2,7 BB₄ BB₅ Tids 1-8 BB₆

Before executing BB2: The MT-CGRF is configured with the graph of BB2.

After the execution of BB1: The control path has diverged, threads 1,3,8 are registered to execute BB2 and threads 2,4-7 BB3

The prologue (BB1) has generated a *live-value* which is stored in the LVC

Control flow

Before executing BB3: The MT-CGRF is configured with the graph of BB3.

After the execution of BB2: threads 1,3,8 are registered to execute BB6 and threads 2,4-7 will now execute BB3

BB2 had generated a new *live-value* (LV2) for threads 1,3,8 which is stored in the LVC

Control flow

Before executing BB4: The MT-CGRF is configured with the graph of BB4.

After the execution of BB3: The control path had diverged again threads 4-6 are registered to execute BB4 and threads 2,7 will now execute BB4

BB3 had generated a new *live-value* (LV3) for threads 2,4-7 which is stored in the LVC

Control flow

Before executing BB5: The MT-CGRF is configured with the graph of BB5.

After the execution of BB4: All threads but 4-6 is registered to execute BB6, threads 4-6 will now execute BB5

BB4 has generated a new *live-value* (LV4) for threads 2,7 which is stored in the LVC

Control flow

Before executing BB6: The MT-CGRF is configured with the graph of BB6.

After the execution of BB1-BB5 all the control path had converged back to the epilogue (BB6)

BB5 has generated a new *live-value* (LV5) for threads 4-6 which is stored in the LVC.

LV3 was used by BB4 and BB5 since it's not a *live* any more the space in the LVC can be reclaimed.

Architecture

The VGIW Architecture Overview

- Coarse grained reconfigurable architecture
- Designed for massive multithreading
- A grid of computational and control units surrounded by LDST units on the perimeter

 The nodes on the grid are connected by an interconnect implemented by reconfigurable switches

Full Architecture

Evaluation

Methodology

- The main HW blocks were Implemented in Verilog
- Synthesized to a 65nm process
 - Validate timing and connectivity
 - Estimate area and power consumption
- Cycle accurate simulations based on GPGPUSim
 - We Integrated synthesis results into the GPGPUSim/Wattch power model
- Benchmarks from Rodinia suite
 - CUDA kernels, compiled as VGIWs

System Configuration

- In the evaluation, a processor configuration similar to the Fermi is used
 - Clock: 1.4GHz
 - 32x compute tiles; 32x control tiles; 16x LD/ST tiles; 16x LVU tiles; 12x SCUs

- Fermi memory system
 - L1 cache: 64KB (SGMF does not have shared memory)
 - L2 cache: 768KB
 - Latencies as in default GPGPUSim Fermi configuration

Speedup

Benchmark

Energy Efficiency

Conclusions

- von-Neumann engines have inherent inefficiencies
 - Throughput computing can benefit from dataflow/spatial computing
- Scheduling blocks according to the von-Neumann semantics increases utilization of the dataflow fabric
 - Dynamic coalescing overcomes the control divergence problem
- VGIW can potentially achieve much better performance/power than current GPGPUs
 - On average x3 speedup and 33% energy saving
 - Need to tune the memory system
- Greatly motivates further research
 - Compilation, VGIW block granularity, memory coalescing on MT-CGRFs

Thank you!

Questions...?