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Massively Parallel Computing

• Massively parallel programming models (CUDA/OpenCL) are popular in 
HPC (High-Performance Computing)

• Programmer decomposes program into small tasks
• Many instances of the same task are runnable at any given time
• Decomposed code may yield fine-grain tasks that can be translated to data-flow 

graphs

• GPUs yield more FLOPS per Watt
• Are integrated in systems from mobile to supercomputers

• But… GPGPUs still suffer from 
von-Neumann inefficiencies



von-Neumann Inefficiencies

• The von-Neumann model carries inherent inefficiencies

• Fetch/Decode/Issue each instruction
• Even though most instructions come from loops

• Explicit storage needed for communicating values between 
instructions
• Data travels back  and forth between  execution units and  explicit storage

[Understanding Sources of Inefficiency in General-Purpose Chips, Hameed et al., ISCA10]

Component Inst. 
fetch

Pipeline 
registers

Data 
cache

Register 
file

Control FU

Power [%] 33% 22% 19% 10% 10% 6%



Alternative – Dataflow Based MT-CGRF

• Using Multi-Threaded Coarse Grain Reconfigurable Fabric (MT-CGRF)

• Eliminates von-Neumann inefficacies by using spatial computing (dataflow)

• Increases utilization by using simultaneous multithreading

• To execute a CUDA kernel on a MT-CGRF

• Transform the sequential code into a dataflow graph

• Map and route the MT-CGRF

• Stream multiple threads through the fabric



Coarse Grained Reconfigurable Array (CGRA)

int temp1 = 
a[threadId] * b[threadId];
int temp2 = 5 *  temp1;
if (temp2 > 255 ) {

temp2 = temp2 >> 3;
result[threadId] = temp2 ;}

else
result[threadId] = temp2;

a threadIdx entry b

IMM_5 S_LOAS1 S_LOAD2

ALU1_mul ALU2_mul JOIN1

IM_3 ALU4_ashl ALU3_icmp IMM_256

if_else if_then

S_SOTRE3 result S_SOTRE4



SGMF: Simultaneous Multithreading on CGRAs

• Single Graph Multiple Flows (SGMF)
• Control-dataflow graph (CDFG) is mapped 

to the grid
• Maximal spatial parallelism with-in each 

thread (ILP)
• Pipelining and dynamic dataflow achieve 

thread-level-parallelism (TLP) 

• But
• Limited to small kernels
• When all control paths are mapped the grid 

cannot be fully utilized

[Single-Graph Multiple Flows: Energy Efficient Design Alternative for GPGPUs, Voitsechov and Etsion, ISCA14]



VGIW
• Vector Graph Instruction Word (VGIW)

• Basic blocks are represented as compound graph 
instruction words (GIW)

• GIWs concurrently execute for vectors of threads

• von  Neumann control flow dynamically 
schedules VGIWs on the CGRA

• Threads are coalesced according to their 
control flow and are executed concurrently



Execution and Machine Model



VGIW – A Hybrid Solution

kernel() <<8 threads>> 

Prologue //BB1

if (threadIdx == either (1,3,7)) 

func1() //BB2 

else 

func2() //BB3 

if (threadIdx == either (2,7))

func3() //BB4

else

func4() //BB5

Epilogue() //BB6

Code Control Flow



VGIW – A Hybrid Solution

Underutilized due to 
temporal (and 
spatial) division of the 
HW between the BBs

Underutilized due to 
spatial division of the 
HW between the BBs

Fully utilized

GPGPU SGMF VGIW



Machine Model

• Each thread may take a different control path

• Control nodes update the thread vector of the next executed block for each thread

• Threads that need to execute a block are dynamically coalesced into a thread vector

• Thread vectors are stored in the Control-Vector-Table (CVT)

• Temporal Values may stay alive between blocks

• Values that are alive in-between blocks are written to the Live-value-cache (LVC)

• The LVC is accessed 10x less 

frequently than a GPGPU RF



Execution Flow

Before executing BB1:
All threads execute the 
prologue  Entire BB1’s 
thread vector is set to 1’s.

Before executing BB1:
No temporal values are 
alive  The LVC is empty.

Before executing BB1:
The MT-CGRF is configured 
with the graph of BB1.

Control flow Machine state



After the execution of BB1:
The control path has 
diverged, threads 1,3,8 are 
registered to execute BB2 
and threads 2,4-7 BB3

The prologue (BB1) has 
generated a live-value
which is stored in the LVC

Before executing BB2:
The MT-CGRF is configured 
with the graph of BB2.

Control flow Machine state

Execution Flow



After the execution of BB2:
threads 1,3,8 are registered 
to execute BB6 and threads 
2,4-7 will now execute BB3

BB2 had generated a new 
live-value (LV2) for threads 
1,3,8 which is stored in the 
LVC

Before executing BB3:
The MT-CGRF is configured 
with the graph of BB3.

Control flow Machine state

Execution Flow



After the execution of BB3:
The control path had 
diverged again threads 4-6 
are registered to execute 
BB4 and threads 2,7 will 
now execute BB4

BB3 had generated a new 
live-value (LV3) for threads 
2,4-7 which is stored in the 
LVC

Before executing BB4:
The MT-CGRF is configured 
with the graph of BB4.

Control flow Machine state

Execution Flow



Execution Flow

After the execution of BB4:
All threads but 4-6 is 
registered to execute BB6, 
threads 4-6 will now 
execute BB5

BB4 has generated a new 
live-value (LV4) for threads 
2,7 which is stored in the 
LVC

Before executing BB5:
The MT-CGRF is configured 
with the graph of BB5.

Control flow Machine state



After the execution of BB1-
BB5 all the control path had 
converged back to the 
epilogue (BB6)

BB5 has generated a new 
live-value (LV5) for threads 
4-6 which is stored in the 
LVC.

Before executing BB6:
The MT-CGRF is configured 
with the graph of BB6.

LV3 was used by BB4 and 
BB5 since it’s not a live any 
more the space in the LVC 
can be reclaimed.

Control flow Machine state

Execution Flow



Architecture



The VGIW Architecture Overview

• Coarse grained reconfigurable architecture

• Designed for massive multithreading

• A grid of computational  and control units 

surrounded by LDST units on the perimeter

• The nodes on the grid are connected by an interconnect 

implemented by reconfigurable switches



Full Architecture



Evaluation



Methodology

 The main HW blocks were Implemented in Verilog

 Synthesized to a 65nm process
• Validate timing and connectivity
• Estimate area and power consumption

 Cycle accurate simulations based on GPGPUSim
• We Integrated synthesis results into the GPGPUSim/Wattch power model

 Benchmarks from Rodinia suite
• CUDA kernels, compiled as VGIWs



System Configuration

 In the evaluation, a processor configuration similar to the Fermi is used

• Clock: 1.4GHz

• 32x compute tiles; 32x control tiles; 16x LD/ST tiles; 16x LVU tiles; 12x SCUs

 Fermi memory system

• L1 cache: 64KB (SGMF does not have shared memory)

• L2 cache: 768KB

• Latencies as in default GPGPUSim Fermi configuration 



Speedup
Speedup vs. SGMF

Speedup vs. Nvidia Fermi



Energy Efficiency
Energy efficiency vs. SGMF

Energy efficiency vs. Nvidia Fermi



Conclusions

• von-Neumann engines have inherent inefficiencies 
• Throughput computing can benefit from 

dataflow/spatial computing

• Scheduling blocks according to the von-Neumann semantics increases utilization 
of the dataflow fabric
• Dynamic coalescing overcomes the control divergence problem

• VGIW can potentially achieve much better performance/power than current 
GPGPUs
• On average x3 speedup and 33% energy saving
• Need to tune the memory system

• Greatly motivates further research
• Compilation, VGIW block granularity, memory coalescing on MT-CGRFs



Thank you!

Questions…?


