
MORC
A MANYCORE ORIENTED COMPRESSED CACHE

TRI M. NGUYEN, DAVID WENTZLAFF

12/7/2015 1

Architectures moving toward
manycore

12/7/2015 2

Tilera: 64-72 cores
(2007)

Intel MIC:
288 threads (2015)

NVIDIA GPGPUs:
3072 threads (2015)

Increasing thread aggregation
◦ Cloud computing

◦ Massive warehouse scale center

Motivation: off-chip
bandwidth scalability

Throughput is already bandwidth-bound
◦ Assumption: 1000 threads, 1GB/s per thread

◦ Demand: 1000GB/s

◦ Supply: 102.4GB/s (four DDR4 channels)

◦ Oversubscribed ratio: ~10x

Bandwidth-wall will stall practical manycore scaling
◦ Economy of high pin-count packaging

◦ Pin size hard to be smaller even in high cost chips

◦ Frequency does not scale well

12/7/2015 3

Throughput = min(compute_avail, bandwidth_avail)

Compressing LLC as a solution
More on-chip cache correlates with higher performance

More effective cache through compression correlates with perf.

12/7/2015 4

Compressing LLC as a solution
More on-chip cache correlates with higher performance

More effective cache through compression correlates with perf.

12/7/2015 5

MORC:
◦ Manycore-oriented compressed cache

◦ Compresses the LLC (last level cache) to
reduce off-chip misses

Insight:
◦ throughput over single-threaded

◦ expensive stream-based compression
algorithms

Outline

◦ Stream compression is great!
◦ …but is hard with set-based caches

◦ …and is not for single-threaded performance

◦ Stream compression with log-based caches

◦ Architecture of log-based compressed cache

◦ Results
◦ Performance

◦ Energy

12/7/2015 6

What is stream-based
compression?
Common software data compression algorithms

◦ LZ77, gzip, LZMA

Sequentially compresses cache lines as a single stream
◦ Compress using pointers to copy repeated string (data)

12/7/2015 7

What is stream-based
compression?
Common software data compression algorithms

◦ LZ77, gzip, LZMA

Sequentially compresses cache lines as a single stream
◦ Compress using pointers to copy repeated string (data)

12/7/2015 8

What is stream-based
compression?
Common software data compression algorithms

◦ LZ77, gzip, LZMA

Sequentially compresses cache lines as a single stream
◦ Compress using pointers to copy repeated string (data)

12/7/2015 9

What is stream-based
compression?
Common software data compression algorithms

◦ LZ77, gzip, LZMA

Sequentially compresses cache lines as a single stream
◦ Compress using pointers to copy repeated string (data)

12/7/2015 10

Stream compression example

12/7/2015 11

Stream compression example

12/7/2015 12

Stream compression example

12/7/2015 13

Stream vs block-based
compression

12/7/2015 14

Stream-based compression achieves much higher compression

Stream vs block-based
compression

12/7/2015 15

Stream-based compression achieves much higher compression

Many prior-work uses block-based compression

Two reasons: single-threaded performance & implement-ability

First reason:
Well-matched for throughput

Decompression is inherently expensive

12/7/2015 16

First reason:
Well-matched for throughput

Decompression is inherently expensive

12/7/2015 17

First reason:
Well-matched for throughput

Decompression is inherently expensive

12/7/2015 18

First reason:
Well-matched for throughput

Decompression is inherently expensive

12/7/2015 19

Insight:
◦ High latency

◦ High energy consumption

Memory accesses are expensive!

Second reason: Hard to
implement with set-based caches

12/7/2015 20

Second reason: Hard to
implement with set-based caches

12/7/2015 21

Implementation: compress each cache set as a compressed stream

Second reason: Hard to
implement with set-based caches

Cache sets are unsuited for stream-based compression
◦ Evictions and write-backs corrupt the compression stream

12/7/2015 22

Implementation: compress each cache set as a compressed stream

Introducing log-based caches

12/7/2015 23

Log-based caches organize cache lines by temporal fill order

Fill data-path architecture

12/7/2015 24

◦ Lines stream to one active log sequentially

◦ Record address_1 to log_3 in a table

Fill data-path architecture

12/7/2015 25

◦ Lines stream to one active log sequentially

◦ Record address_2 to log_3 in a table

Fill data-path architecture

12/7/2015 26

Log-flush happens when not enough space
◦ Not in critical-path

◦ Only writes back dirty cache lines

Fill data-path architecture

12/7/2015 27

◦ Lines stream to one active log sequentially

◦ Record address_3 to log_4 in a table

Request data-path

12/7/2015 28

LMT: Line-Map Table (redirection table)
◦ Indexed by addresses
◦ Points to logs

Request data-path

12/7/2015 29

LMT: Line-Map Table (redirection table)
◦ Indexed by addresses
◦ Points to logs

1. Stream compressor
2. LMT
3. Eviction policy (flush)

Content-aware compression
with logs
Multiple active logs enable content aware compression

◦ Dynamically chooses the best stream based on similarity

◦ Better than strict sequential compression

12/7/2015 30

Prior work in LLC compression

12/7/2015 31

Internal-fragmentation in compression blocks
◦ Decreases absolute compression ratio as much as 12.5%

External fragmentation
◦ Increase LLC energy by as much as 200% (studied in [2])

[1] Alameldeen et al, “Adaptive cache compression for
high-performance processors,” ISCA’04
[2] Sardashti et al, “Decoupled compressed cache:
exploiting spatial locality for energy-optimized
compressed caching,” MICRO’13
[3] Arelakis et al, “SC2: A statistical compression cache
scheme,” ISCA’14

Scheme

Internal

fragmentation

External

fragmentation

Tags

overhead

Requiring

software Set-based Algorithm

Adaptive[1] Yes Yes Medium No Yes Block

Decoupled[2] Yes No Low No Yes Block

SC2[3] Yes Yes High Yes Yes Centralized

MORC Very little No Low No Log-based Stream

Simulation methodology

Simulator: PriME[1]
◦ Execution driven, x86 inorder

SPEC2006 benchmarks

Future manycore system
◦ 1024 cores in a single chip

◦ 128MB LLC (128KB per core)

◦ 100GB/s off-chip bandwidth (100MB/s per core)

12/7/2015 32

[1] Y. Fu et al, “PriME: A parallel and distributed simulator for thousand-core chips,” ISPASS 2014

Compression results

12/7/2015 33

Compression results

12/7/2015 34

Max average comp. ratio: 6x
Arithmetic mean: 3x

Throughput improvements

12/7/2015 35

Max average comp. ratio: 6x
Arithmetic mean: 3x

Throughput improvements

12/7/2015 36

Max average comp. ratio: 6x
Arithmetic mean: 3x

Throughput improvements: 40%
Best prior work: 20%

Throughput improvements

12/7/2015 37

Max average comp. ratio: 6x
Arithmetic mean: 3x

Throughput improvements: 40%
Best prior work: 20%

Throughput improvements

12/7/2015 38

Max average comp. ratio: 6x
Arithmetic mean: 3x

Throughput improvements: 40%
Best prior work: 20%

Improvements depends
on working set sizes

Energy
Two questions:

◦ DRAM access energy savings

◦ Compression/decompression energy concern

12/7/2015 39

Energy
Expensive DRAM accesses

Negligible compression energy

Small decompression energy

12/7/2015 40

Memory subsystem energy normalized to uncompressed baseline

Energy
Expensive DRAM accesses

Negligible compression energy

Small decompression energy

12/7/2015 41

Memory subsystem energy normalized to uncompressed baseline

Summary
Stream compression is much better versus block-based

◦ …but is hard with set-based caches

◦ …and is not right approach for single-threaded performance

Log-based caches efficiently support stream-based compression
◦ Sequential cache line placements

Architecture
◦ Stream compressor, LMT, eviction policy

Results
◦ 50% better compression, 100% better throughput improvements

◦ Better energy efficiency

12/7/2015 42

