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Introduction 



There Is Only One Grand Challenge in Computing 

Discover and emulate the brain’s computational paradigm 
 
We  know what the brain can do... 
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How does the brain do it? 
Can we construct hardware that 

follows the same paradigm? 
 
 



Topics 
q  Computational paradigms 

•  Discuss via a very familiar example 
•  This will be a guiding analogy 

q  A neuron model to support computation 
•  Basic elements and operation 

q  Temporal computation and communication 
•  What is it?  
•  How it is different from conventional computational models? 
•  How it is different from traditional neural networks? 

q  An architecture under development 
•  Consider it to be a case study for tackling the problem 
•  Progress to date 
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Initial Comment 
q  Everyone speaks with authority, but no one knows 

•  Preface everything I say with “In my opinion” 
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Imagine... 
q  An advanced civilization which computes in an entirely different way than we 
q  Say this civilization comes across one of our high-end computers 

•  Cores are multi-way out-of-order superscalar processors 
•  Multiple processors with complex memory hierarchy 
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http://www.euroben.nl/reports/web12/xeon.php 



Discovering the Computational Paradigm 
q  Breakthrough 1: Binary communication is discovered  

•  After a lot of work, analyzing voltages on wires 
•  Exact voltage levels aren’t important, only 0s and 1s ! 

q  Breakthrough 2: Logic gates 
•  A small set of basic building blocks are used everywhere 
•  Signals flow from inputs to outputs 

q  Breakthrough 3: Combinational Logic 
•  Understanding the operation of a fixed point adder would be a triumph! 
•  Purely combinational logic would be extremely useful  

The advanced civilization could eventually develop systems with thousands of 
combinational logic levels 

These could perform very useful computations 
Without even knowing the complete computing paradigm 

q  Breakthrough 4: The function of feedback and clocking 
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Eventually... 
q  Someone might eventually  discover the paradigm 

•  But it is very much obscured – mostly by performance enhancements 
•  Eg., find the PC in a superscalar processor 
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from Wikipedia 



What Is Not Part of the Paradigm? 
q  Short answer: almost everything! 
q  All physical properties of CMOS ckts 
q  Performance enhancements 

•  Branch prediction 
•  Memory hierarchies 
•  n-Way issue 

q  Power savings 
•  Clock gating 
•  Voltage scaling 

q  Reliability 
•  ECC in memories 
•  Redundancy at server level 

q  Etc. 
•  Buffering state for precise traps 

There is a lot of stuff in the brain that 
isn’t part of its paradigm, as well! 
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Biological Overview 



Neocortex 
q  Thin sheet of neurons  

•  Area of about 2500 cm2  
Folds increase surface area 

•  2 to 4 mm thick. 
•  Approx 100 billion total neurons 

(human) 
q  Hierarchical Structure 

•  Neurons 
•  Columns 
•  Macro-Columns 
•  Regions 

q  Neuron and column levels are our 
focus 
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Hierarchy 
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from Felleman and Van Essen (1997) 

Column  
O(100) neurons 

Macro-Column  
O(100) columns 

Regions 
Many Macro-Columns 

from Ramon y Cajal 
(wikipedia) 

Neuron 

from Mountcastle 1997 from Hill et al. 2012 



Biological Neurons 
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from deFelipe 2011 

pyramid cell (center, not labeled) 
surrounded by three types 
inhibitory cells 

tiny dots are synapses 
(connection points) 

Dendrites (Inputs) 

Axon (Output) 



Neuron Operation 
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q  Total neurons – 100 billion 
q  Synapses per neuron – 10 thousand 

•  90% or more are “silent” at any given time 

q  Neuron latency 
•  1’s of milliseconds 

q  “Transmission” delay 
•  1’s of milliseconds 
•  Path lengths order (100s um)  

or more 
•  Prop. delay order (100s um per ms) 

q  Multiple synapses per neuron pair 
•  On the order of 10 

 

Important Properties (Neocortex) 
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100 µm 

from Bakkum et al. 2008 

from Hill et al. 2012 – Markram group 

axons dendrites 



Spiking Neurons: Precision 
q  Mainen and Sejnowski (1995) 

“stimuli with fluctuations resembling synaptic activity produced spike trains with 
timing reproducible to less than 1 millisecond” 
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q  Petersen, Panzeri, and Diamond (2001) 
•  Somatosensory cortex of rat (barrel columns) 
•  Two cells in same column 
•  Figure shows latency to first spike in response to 

whisker stimulation (.1 ms resolution) 
•  There is some information content in immediately 

following spikes, but it is minor 

http://www.glycoforum.gr.jp/science/word/proteoglycan/PGA07E.html 

units are .1 msec 



Your Brain  (Neocortex) 
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q  A massive, asynchronous, locally-self-timed network built of unreliable 
components 

q  Information is encoded via precise spike timing relationships (“precise” = 1 
decimal digit @ 1 msec) 



Biological Plausibility 
q  Goal: Discover a computational paradigm such that all the significant features 

embodied in the paradigm are supported via biological experiment 
•  But not everything in the biology must be represented in the paradigm! 
  A lot of it won’t be 

•  The way the brain computes is not the same as the way the brain works 
q  In the brain, the paradigm is obscured by mechanisms that implement a large 

asynchronous machine built with unreliable components 
•  The vast majority of the elements and variety may not be part of the basic 

paradigm 
•  Rather, they are there to provide a reliable substrate for computation 
•  Brain scientists and computer scientists have little (or no) appreciation for this 
  “What is all the feedback for?” 
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Modeling Neurons 



Neuron Model:  Integration 
q  Spike generates response function 

•  Bi-exponential Excitatory Post Synaptic Potential (EPSP) 
•  Responses are summed linearly 
•  This models the neuron’s membrane (body) potential 

q  When potential exceeds threshold value (θ) 
•  Generate output spike 
•  Then reset potential to zero  (not illustrated) 
•  Wait for refractory time interval (not illustrated) 
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...
...

Membrane Potential

q∑

EPSP = K (e-t/τM – e-t/τE) 
  e-t/τE : Synaptic “gate” closing 
  e-t/τM : Membrane leakage 



W1

W2

Wn

...
...

Membrane Potential

q∑

Neuron Model:  Synapses 
q  Synapses have an associated efficacy or “weight” 

•  The larger the weight, the higher the EPSP’s amplitude 
•  Typically modeled as a value between 0 and 1 
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EPSP from strong synapse EPSP from weak synapse 



Neuron Model:  Synaptic Plasticity 
q  Synapse weights are adaptable or plastic 

•  This allows the customization of individual neurons 
•  Achieved via training 

q  Spike Time Dependent Plasticity (STDP) 
•  If an input spike closely precedes an output spike, the associated synapse 

is strengthened 
•  If an input spike closely follows an output spike, the associated synapse is 

weakened 
q  Training 

•  Present patterns of input spikes for the neuron to learn 
•  Synapses adjust weights to those patterns 
•  After training,  the learned patterns (as well as similar patterns) will cause 

an output spike 
q  Training is localized, unsupervised, proceeds from inputs to outputs 

•  All good features to have for very fast, very efficient training 
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Neuron Model:  Delays 
q  The inter-neuron delay is on the same order as the neuron’s 

computational latency 
•  Delays cannot be ignored 
•  They are a basic computational component 
•  A few theoreticians take this into consideration 
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Neuron Model:  Multisynapse Connections 
q  A connection between two neurons is not just a single path 

•  There may be several paths 
•  Each with a different delay 

q  This is also a key part of the computational process 
•  Almost entirely ignored by theoreticians 
•  The  range of weights defines a rich set of  unary EPSP transformations 
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Multi-Path EPSPs 
q  Example: Eight paths w/ different delays 
q  Use some selected 0/1 weights to illustrate possibilities 
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Role of Inhibition 
q  Inhibition is not computationally symmetric wrt excitation 
q  Inhibitory neurons: 

•  Sharpen/tune  
•  Provide localized moderating/throttling  

Save energy 
•  Allow dynamic adjustment of effective threshold 

q  Inhibitory neuron properties 
•  Only 15-25 % of neurons 
•  Outputs are typically used only locally (interneurons) 
•  Can be modeled as a population  
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Temporal Computation 



Temporal vs. Spatial Coding 
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Spatial Processing: Which Has 
Highest Value? 



Temporal Processing: Which Has the 
Highest Value? 



Example: Classification 
q  Class 

•  A collection of similar patterns, based on a number of features or properties 
•  Degrees of class membership may be quantified 

q  Train using some members of the class 
q  Then, detect (classify) input patterns that are similar to the training patterns 

•  But which may never have been used during training 
•  These form a class 

q  Temporal pattern: a sequence of spikes from multiple neurons 
•  Example: a class defined by two features, or properties 
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A Spiking Neuron is a Natural Classifier 
q  An example with seven quantified features (inputs) 

•  For simplicity, assume unit weights 
q  Establish class “center” as point where all input spikes align in time 

•  After input delays are applied 
•  Note: Delays are computational components 

q  Adjust threshold level to establish limits of class 
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q  Traditionally, information is carried in spike rates 

 
q  Encode rates as a range of values 
q  Operate on values with Perceptrons 

•  Form sum of weighted inputs 
•  Apply transfer function:  

threshold, sigmoid  --1/(1-e-x), tanh -- or saturating piecewise linear function 
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q  In two-dimensional space 
•  Two perceptrons in 1st dimension define open convex region (threshold fcn) 
•  Use sigmoid function  to  add gradation 
•  Two perceptrons in second dimension define second open convex region 
•  Adding sigmoid function and combining with first convex region yields 

approx. class 
q  Requires O(N) perceptrons for N dimension 

•  There can be hundreds of dimensions 
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Example: Defining a Class 

0 

0 



Developing a Paradigm 



Approach 
q  Networks studied 

•  Feedforward  
•  Separate training and application 
•  Single volley of spikes at a time 

q  Standard machine learning benchmark(s) 
•  This could morph into a machine learning project 

With a far more efficient training method 
q   Network Simulation Model 

•  Written in Matlab 
•  Frontend simulates synaptic weights, delays, and plasticity 
•  Backend simulates neuron body 

q  Abstract Functional Model 
•  Written in Matlab 
•  Abstracts spike volleys 
•  Uses direct function evaluation 

Avoids time step simulation 

q  Run on a laptop 
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MNIST Benchmark 
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q  What it is: 
•  Tens of thousands of 28 x 28 grayscale images of written numerals 0-9 
•  Pixelized w/ interpolation from B&W images 

q  Accuracy 
•  The best machine learning implementations have an accuracy of about 

99.5% 
q  Goal: similar accuracy to best machine learning implementations 

•  Training time several orders of magnitude faster 



Overview 
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q  Use hierarchy as in deep learning approaches 
•  First level: processing; conversion to temporal, sparse unordered coding 
•  Second level:  64 to 16 processing;  8x8 columns, 16 neurons each 
•  Third level : 16 to 4 processing;  4x4 columns, 16 neurons each 
•  Fourth level: 4 to 1 processing; 2x2 columns, 16 neurons each 
•  Final level: 10 classifier outputs operating on single 16 neuron column 

image
28x28 8 x 8

16 neurons each

4 x 4
16 neurons each

2 x 2
16  neurons each

16
neurons 

full 
interconnect

10 
neurons



System Architecture 

Dec. 17, 2014 JE Smith 39 

Layer 1
Interface

Convert levels to 
temporal spikes

Layer 2

.

.

.

.

.

.

28x28 = 784 lines
dense, ordered code

.

.

.

Convert to On-Off
unordered code

64 columns
8x8 overlapping 5x5 fields

1024 neurons
409,600 synapses

1568 lines
dense, unordered 

code
16 columns

4x4 nonoverlapping 8x8
256 neurons

294,912 synapses

4 columns
2x2 nonoverlapping 

16x16
64 neurons

73,728 synapses

1 column
1 nonoverlapping 28x28

16 neurons
18,432 synapses

output classifiers
10 neurons

3840 synapses

Layer 3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.

.

.

.

Layer 4
Layer 5
Interface
Classify



First Two Layers 
q  Layer 1: A single column processes a 5x5 receptive field 

•  There are 8x8 = 64 overlapping RFs in all 
q  Layer 2: A single column processes four of the overlapping 5 x 5 fields 

•  Covers an 8x8 in the original images 
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5x5 Receptive Field 

Image #5 from training set 

8x8 Level 2 Field 



Layer 1 Column Architecture 
q  One column per 5x5 Receptive Field 
q  16 neurons 
q  All input weights fixed at 11110000 

•  Discovered to work well after much experimentation 
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Layer 1:
Convert dense unordered code 

to sparse unordered code

.

.

.

5 x 5 Receptive Field 

.

.

.

Convert to On-Off
unordered code

16 neurons, 
19 inputs each

Random connects;
Each input feeds 
6+ neurons;
Each neuron fed 
by 19 inputs

16 temporally coded lines; 
compressed “signature” of the 
input class

25 lines
dense, 

ordered code

.

.

.

50 lines
dense, 

unordered code

...

...



Layer 1 Example Classes 
q  Use 10,000 train and test images 
q  Classes are identified by first six ordered spikes (only) 

•  This ignores specific temporal information which can further distinguish images 
q  Example of images in the same class: 
 
 
 
q  Full images: 

q  Another example 
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Layer 2 Column Architecture 
q  Outputs of 4 Layer1 columns are merged 
q  These are inputs to Layer 2 column 
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Layer 2:
Merge and process four 
overlapping 5x5 fields

.

.

.

16 neurons, 
24 inputs each

Random connects;
Each input feeds 
6+ neurons;
Each neuron fed 
by 24 inputs

16 temporally coded lines; 
compressed “signature” of an 
L1 class

.

.

.

...

...

64 lines
Merged from 

four L1 columns

5x5 5x5

5x5 5x5

8x8



Layer 2 Example Classes 
q  At layer 2 

•  These are four overlapped 5 x 5s  which form an 8 x 8 
q  Example of images with same first six spikes in same order: 
 
 
 
q  Full size images 

q  Another example: same first four spikes in same order 
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Conclusions 



Conclusions  (Opinions) 
q  Mechanisms for keeping a large asynchronous machine afloat are much 

more prominent than the paradigm, itself 
•  Which may explain why the paradigm has been so hard to find 

q  Delays are a critical computing component 
•  Communication and computation are temporal 
•  Which may explain why the paradigm has been so hard to find 

q  Very efficient training is a key part of the paradigm 
•  And this sets it (far) apart from conventional machine learning 

q  There are many opportunities for researchers with a good engineering 
sense 

•  Engineering practicality and biological plausibility are first cousins 
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Background (Where to Look) 
q  The following are example sources of information that I have found 

very useful 
•  There are many others 

q  All have a very strong interest in discovering the brain’s computational 
paradigm 

q  They all seem to be asking the right questions 
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Biology 
Just about any text, Scholarpedia, or Wikipedia 

Experimental work 
Markram group 

Hill,, al. et, Statistical connectivity provides a sufficient foundation for specific functional connectivity 
in neocortical neural microcircuits, Proc. of the National Academy of Sciences (2012) 

Modeling 
Gerstner group 

Morrison, Abigail, Markus Diesmann, and Wulfram Gerstner. "Phenomenological models of synaptic 
plasticity based on spike timing." Biological cybernetics 98, no. 6 (2008): 459-478. 

Theory 
Maass 

Maass, Wolfgang, Networks of spiking neurons: the third generation of neural network models, Neural 
networks 10.9 (1997): 1659-1671 

Neuron level design 
Bohte 

Bohte, Sander M., Han La Poutré, and Joost N. Kok. "Unsupervised clustering with spiking neurons by 
sparse temporal coding and multilayer RBF networks," IEEE Transactions on Neural Networks, 13, no. 
2 (2002): 426-435. 

Column level design  (also spike coding) 
Thorpe group 

Guyonneau, Rudy, Rufin VanRullen, and Simon J. Thorpe. "Temporal codes and sparse 
representations: A key to understanding rapid processing in the visual system." Journal of 
Physiology-Paris 98 (2004): 487-497. 


