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Not DRAM$ 

Now, Part of Memory!!

FAST SLOW

1. Data Migration

2. Memory Integrity

Goal: Enable Hardware-Managed PoM!
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Adapt & Remap data 

at a fine granularity!



What Challenges?

Size & Latency

Remapping Table

Memory Utilization Tracking Structure

Metadata for GBs of 

Memory!
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Unison Cache: A Scalable and Effective 
Die-Stacked DRAM Cache 

Djordje Jevdjic      Gabriel H. Loh  
Cansu Kaynak         Babak Falsafi                       

TODAY @2:15pm, Session 1A 
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Bi-Modal DRAM Cache: Improving Hit Rate, 

Hit Latency and Bandwidth  

Nagendra Gulur* 

Collaborators: Mahesh Mehendale*,  

R Manikantan§ and R Govindarajan+  
*Texas Instruments, Bangalore 
§ Intel Corporation, Bangalore 

+Indian Institute of Science, Bangalore 

Picture courtesy Bryan Black Problems with Stacked  

DRAM Caches 

 

1. Large Tag Store 

2. High Hit Latency 

3. Wasted Off-Chip Bandwidth 

 



•Expensive 

•Fast Access 

•Mitigation: 

• Larger Blocks? 

High Wasted 

Bandwidth 
 

SRAM       DRAM 

Large Metadata 

Our Proposal 

Metadata : In  DRAM 

Block Size : Two Sizes (64B and 512B) 

Tag Access : As good as SRAM 
 

•Slow Access 

•Scales for very large 

cache sizes 

•Mitigation: 

•Tags and Data in 

same rows? 

•Give up Associativity? 



Tag Bank 

Data Banks 

Bi-Modal Cache Organization 
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Way Locator 

Block Size 
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SRAM DRAM 
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Benefits and Results 

Hit 

Rate 

Hit  

Latency 

Wasted 
Bandwidth 

Tag 

Data 

Parallel Tag + Data 

Performance Improves by 

10-14% in 4, 8 and 16-

core workloads. 

 

SRAM Overhead ~140KB 
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Goal: Tolerate TSV faults & Large faults at low cost 

3D DRAM: Overcomes memory bandwidth wall 
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•  Citadel protects against TSV and Large Faults, 
while retaining line in the same bank 

•  Citadel employs a three-pronged approach 

DRAM 
Dies 

ECC Die 

Dynamic TSV SWAP 1	
  

Tri Dimensional Parity 2	
  

Dual Granularity Sparing 3	
  

Citadel has negligible overheads and still provides 
700x higher resilience than the best ECC schemes 
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*Pervasive Parallelism Laboratory, Stanford University
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Compiler Framework for 
Multi-Dimensional Mapping

Code 
Generation

Logical Dimension:  x, y, z, ..
Block Size:  N
Degree of Parallelism (DOP): Span(n), Split(k)

IR Traversal &
Generate

Constraints

Search for an
Efficient Mapping
(Score Calculation,

DOP Control)

Compiler
Front-end

Application

Pattern (I)           Dim(y), Size(16), Span(1)
Pattern (J)      Dim(x), Size(32), Span(all)

Equivalent Parameters for Warp-Based Mapping

Mapping Constraints
(e.g., Dim(x) for coalescing)

Memory Optimization
(layout, shared mem)

A Set of Templates 
for Each Pattern

Selected
Mapping

IR IR with 
Constraints

 Compiler Overview

 Define Mapping Parameters
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 Rodinia benchmark suite

 28.6x speedup over 1D mappings

 9.6x speedup over existing 2D mappings

 24% slower than manually optimized CUDA code (7 out of 8)

 Today 1:25 PM (Session 1B, Room: Main Auditorium)
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Existing SW Approaches 
• Memory contention 

• Suboptimal load balancing 

• SW overhead 

Fine-Grain 
Hardware Worklist 

• HWWL distributed banks 

• HWWL distributed banks 

• HWWL work redistribution 

• Seamless work spilling to 
and refilling from memory 
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Performance Results 

1.2—2.4X speedup over highly optimized SW 
implementation of challenging, irregular applications 
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PORPLE: An Extensible Optimizer for 

Portable Data Placement on GPU 

North Carolina State University 

Guoyang Chen 

Xipeng Shen 

Bo Wu Dong Li 

Colorado School of Mines Oak Ridge National Lab 



Data Placement Problem on GPU 
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Global memory 

Texture memory 

Shared memory 

Constant memory 

(L1/L2 cache) 

(Read-only cache) 

(Texture cache) 

A 

B 

C 

D 
… 

Data in a program 

? 

? 

? 

? 
? 

3X performance difference 
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PLACER 

(placing engine) 

MSL 

(mem. spec. lang.) 

PORPLE-C 

(compiler) 

architect/user 
mem  

spec 

org. program 

access  

patterns 

staged  

program 

online profile 

desired  

placement 

Efficient  

Execution 

Offline Online 

microkernels 

input 

PORPLE:  

Portable Data Placement Engine 

Goal: To determine the best data placement strategy  

          cross different architectures and inputs during  

          run-time. 



spmv particlefilter 

Portability and Input-adaptive 
• Cross architectures 

 

 
 

 

 

• Cross inputs 

4 
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Yunsup Lee – UC Berkeley



Yunsup Lee – UC Berkeley

Executive Summary
28 Benchmarks written in CUDA 
(Parboil, Rodinia, FFT, nqueens) 

CUDA 6.5 
Production Compiler 

Divergence Stack 

CUDA Binary 

Modified CUDA 6.5 
Production Compiler 
Full Predication with 

New Compiler Algorithms 

CUDA Binary 

Performance, Statistics 

NVIDIA 
Tesla K20c 
(Kepler, GK110) 

Performance, Statistics 

Performance with 
predication is on par 
compared to 
performance with 
divergence stack. 
 
The compiler should 
manage divergence, not 
the hardware. 
 

Yunsup Lee – UC Berkeley



Yunsup Lee – UC Berkeley

GPUs do not need 
a divergence stack! 
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Control the trade-off
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Our Proposal

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

GPU TLP

Results Summary:

+24% CPU & -11% GPU

CPU-GPU Balanced 

Strategy

GPU TLP

GPU Latency Tolerance

IF Latency Tolerance

GPU TLP

Results Summary:

+7% both CPU & GPU
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“…Anyone in the world can write anything they want 
about any subject. So you know you are getting the best 
possible information.” – Michael Scott, Dunder Mifflin 

“Wikipedia is the best thing ever…” 



Joshua San Miguel 
Mario Badr 

Natalie Enright Jerger 

3:55pm, Session 2A, Main Auditorium 

“Load Value Approximation is the best thing ever” 

3 
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Jeffrey R. Diamond, Donald S. Fussell 
(University of Texas at Austin) 

Stephen W. Keckler (NVIDIA Corporation)   

Arbitrary Modulus Indexing 

           1 
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Arbitrary Modulus Indexing (AMI) 

           2 

32#bit'address'='ABCD256'x'
'''''''''''''{DIV'255,'MOD'255}'ABC.D 

 AB.CD 
  A.BCD 
   .ABCD 
   .0ABCD 
__________ 
DIV.RRRRR… 

AAA.A… 
 BB.B… 
  C.C… 
   .D… 
DIV.R… 



0.1255

1980s: Extensive NPO2 Indexing Research 
 - Few moduli implemented efficiently 

 
AMI can implement ANY moduli efficiently 

 - Found robust, novel moduli 



AMI Eliminates Bank Conflicts 
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AMI Improves Power And Performance 
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BLISS [ICCD’14]
…

SMS [ISCA’12]
TCM [MICRO’10]

BLISS [ICCD’14] Fast Load/Store
(Memory Attribute)

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

Data PersistenceSTFM [MICRO 07]
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Our Design: Towards A FIRM Tree
Reads Writes
…

BLISS [ICCD’14]

SMS [ISCA’12]
TCM [MICRO’10] FIRM [MICRO’14]

BLISS [ICCD 14]

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

STFM [MICRO 07]

FR-FCFS [ISCA’00]



Fairness PerformanceFairness Performance

vs. the best of
5 previous scheduler designs 



Details about “FIRM”
Fair and High‐Performance 
Memory Control for 
Persistent Memory Systems

Jishen Zhao  
Onur Mutlu
Yuan Xie

HP Labs/Penn State/CMU
CMU
UCSB/Penn State/AMD Research

Presentation:    Mon (Dec.15) 3:30 PM
Session 2A
(Room: Dining Hall)

Poster Session: Tue (Dec. 16) 12:00 PM
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Short-Circuiting Memory Traffic 

in Handheld Platforms
Praveen Yedlapalli, Nachi Chidambaram. N., *Niranjan Soundararajan, 

Anand Sivasubramaniam, Mahmut Kandemir, Chita R. Das

The Pennsylvania State University               *Intel Corp.
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DRAM

Imaging

DSP

Short-Circuiting Memory Traffic 

in Handheld Platforms
Praveen Yedlapalli, Nachi Chidambaram. N., *Niranjan Soundararajan, 

Anand Sivasubramaniam, Mahmut Kandemir, Chita R. Das

The Pennsylvania State University               *Intel Corp.



“Sub-Frame”

Imaging

DSP



Imaging

DSP

buffers

Imaging

DSP

Memory 

Queues

forwarding

Buffer



33  % Reduced DRAM energy

35+% Reduced active cycles for IP

45  % Reduced Cycles Per Frame

~15% Increase in FPS

Talk on Dec-15th - 15:55 - 18:00 Session 2A

See you all at the poster session!
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Efficient Memory Virtualization
Reducing Dimensionality of Nested Page Walks

TLB misses are very costly in virtual servers.

—Buell, et al. VMware Technical Journal 2013

Jayneel Gandhi, Arkaprava Basu,
Mark D. Hill, Michael M. Swift

1
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Escape Filter: Permanent “hard” memory faults

Optimization

4



Escape Filter: Permanent “hard” memory faults

Optimization

4

Please come to our talk

Today, Session: 2A, Main Auditorium

Efficient Memory Virtualization
Reducing Dimensionality of Nested Page Walks

Jayneel Gandhi, Arkaprava Basu,
Mark D. Hill, Michael M. Swift
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Iso-X: A Flexible Architecture for 
Hardware-Managed Isolated Execution

Dmitry Evtyushkin1     Jesse Elwell1      Meltem Ozsoy1

Dmitry Ponomarev1     Nael Abu-Ghazaleh2     Ryan Riley3

1
State University of New York at 

Binghamton
Department of Computer Science

The 47th Annual IEEE/ACM International Symposium on 
Microarchitecture

December 14th, 2014

2
University of California at Riverside

 Department of Computer Science & 
Engineering

3
Qatar University

Department of Computer Science
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Hostile Software
Environment

● Multi-layered TCB
● Large and complex software

Operating System

Hypervisor

Firmware

Hardware

User
App

Libraries

● Iso-X offers isolated execution environment
● Software modules can run in full isolation
● Only Hardware in Trusted Computing Base (TCB)

Threat Model



Isolated Compartments

● Compartments reside in 
process' address space
– Allows efficient interaction

– Simple compartment booting 
process

● All code outside is untrusted
– Used by compartment to 

communicate with outside 
world



Iso-X Highlights

● Full featured execution environment for isolated 
compartments

● Relies only on a few simple data structures 
maintained in protected memory

● Attestation mechanism to protect against 
emulation

● Hardware explicitly controls every access to 
compartment memory

● Low performance impact, only 0.97% on average



next	
  paper	
  



Random Fill Cache 
Architecture

Fangfei Liu and Ruby B. Lee

Princeton University

1

• Defends against challenging cache side-

channel attacks, without impacting 

performance

• Unlike past work focused on cache 

contention-based attacks, we focus on 

“reuse-based attacks” – strikes at heart of 

cache’s function!



Motivation

• Reuse of data may leak secret information

…T[x], T[xi], T[x], T[x], T[xj], T[x]…

• No resource contention (conflicting misses)

• Strike at cache’s main purpose – cache hits

‹xi›=‹xj›
cache hit

(collision)

lower 

execution time

secret information



• Demand fetch policy is root cause of reuse-
based attacks!!

CPU cache memory

serve CPU④

demand access①

fill cache③

miss/demand request②

Our discoveries and solutions



Serve CPU③

demand access① miss/demand request②

random fill request 

fill cache

CPU

cache
memory

• Random fill policy: cache fill is de-correlated
with a demand access

• Demand fetch policy is root cause of reuse-
based attacks!!

CPU cache memory

serve CPU④

demand access①

fill cache③

miss/demand request②

Our discoveries and solutions



Random fill within configurable 
neighborhood window

• Still take advantage of spatial locality – No

performance degradation for crypto programs

• Even improves performance of some 

streaming programs

AES

Demand 

fetch
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  47th International Symposium on Microarchitecture!

ª Unauthorized exposure of sensitive data!
§  Examples: Identify theft, credit card data breach!

ª Software confinement mechanisms continue to improve!
§  Attackers increasingly turn to hardware-based attacks!

12/14/14 1 

CC-Hunter: Uncovering Covert Timing Channels on 
Shared Processor Hardware!

Jie Chen and Guru Venkataramani!
Department of Electrical and Computer Engineering  

The George Washington University!
Washington, DC!

Information Leakage!

Today, 3:55 pm, Session 2B: Security, Room: Umney Theatre!



  47th International Symposium on Microarchitecture!

Covert Timing Channel!

12/14/14 2 

Trojan Spy 

Modulate 
timing 

Decode 
secret 

conflict!

Transmitting: 010 …! Decoding: 010 …!

Time!

Trojan’s !
Access!

Spy’s!
Access! S S S S S S S S S  S  S  S  S   S S S S   S   S   S   S S S S S S S!

               T             T T T T T T              T T T T T              T!

conflicts! conflicts!conflicts!conflicts!conflicts! conflicts!conflicts!conflicts!conflicts! conflicts!



  47th International Symposium on Microarchitecture!

Detecting Covert Timing Channels on Hardware!

12/14/14 3 

ª We study conflicts on shared hardware resource and the 
associated events!

ª We design algorithms that look for patterns of conflicts!
§  On combinational structures!

–  Recurrent Burst Pattern!
§  On memory structures!

–  Oscillation Pattern!

ª Runtime detection capability!
§  Low-cost and efficient hardware-software support!



  47th International Symposium on Microarchitecture!

Results!

12/14/14 4 Today, 3:55 pm, Session 2B: Security, Room: Umney Theatre!

Conflict Patterns !
for Covert Timing Channels!

Conflict Patterns!
for regular benchmark applications!

ª More details in the talk!!

On combinational 
structures!

On memory 
structures!
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Continuous, Low Overhead, Run-Time 
Validation of Program Executions 
The Problem and Existing Solutions 
§  An execution is authenticated if its control flow path and the 

instructions along that path were as intended: adversaries can exploit 
vulnerabilities to alter either of both at run-time or before the run 
starts 

§  Validating the binaries prior to execution is thus not enough 
§  Most existing solutions that check for control flow integrity are 

geared towards specific types of attacks (Vtable modification, 
ROP, JOP etc.) 

§  Need an enduring and universal solution: 
•  Can handle all attacks against code and instruction integrity 
•  Can handle future attacks that can compromise these 

1 

ERDEM AKTAS*, FURAT AFRAM+, KANAD GHOSE [EAKTAS, FAFRAM1,GHOSE]@CS.BINGHAMTON.EDU 
COMPUTER SCIENCE DEPARTMENT STATE UNIVERSITY OF NEW YORK AT BINGHAMTON  

MICRO 2014 



Goal and Unique Aspects of this Work 
§  Go beyond the current point-in-time solutions for dealing 

with specific types of attacks that are known today 
§  Validate code integrity and and/or control flow violations at 

run-time: as the program executes 
§  Provide a more universal and enduring solution, 

irrespective of the specific cause of the violations/attacks 
§  This solution: 
§  Does not require binary modifications 
§  Does not require ISA extensions 
§  Works with out-of-order processors 
§  Is scalable to any binary size 
§  Has a low execution overhead 

MICRO 2014 

2 



Approach 

3 

MICRO 2014 

§  Authenticate crypto-hash signature of basic blocks and control flow 
path between consecutive basic blocks as program executes 

§  Store statically-derived reference information in an encrypted form in 
RAM 

§  Use a signature cache and overlap authentication and normal pipeline 
activity to reduce performance penalty 

§  Delay memory updates from a BB till its execution is authenticated 



Performance Overhead: Two SC Sizes 

0% 
2% 
4% 
6% 
8% 

10% 
12% 
14% 
16% 
18% 

32KB  64K  

IPC(Instruction per Cycle) overhead in % of the benchmarks 
(Average of 1.87%) 

*REV was evaluated through simulation using the cycle-accurate MARSS full system microarchitectural simulator for X86-64 ISA  

MICRO 2014 

4 
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SAVAT:
A Practical Methodology

for 
Measuring 

the Side-Channel 
Signal Available to the 

Attacker 
for 

Instruction-Level Events

Rob Callan, Alenka Zajic, Milos Prvulovic



Rob Callan, Alenka Zajic, Milos Prvulovic

Quantifying Side Channel 
Vulnerability



Rob Callan, Alenka Zajic, Milos Prvulovic

SAVAT

• Side-Channel Signal Available to 
Attackers
–Entire-program

–Circuit-Level

–Instruction-Level 
• Useful for both HW and SW 

improvements

Rob Callan, Alenka Zajic, Milos Prvulovic 3



Rob Callan, Alenka Zajic, Milos Prvulovic

SAVAT Results 7.9x10-21 joules per instruction

0.81.11.11.11.01.21.39.36.94.65.0DIV

1.10.60.60.60.60.70.75.73.73.94.4MUL

1.10.60.60.60.70.60.77.33.84.04.4SUB

1.00.60.60.70.60.70.77.04.14.14.2ADD

1.00.60.70.60.60.70.76.44.13.84.1NOI

1.20.60.60.60.70.60.74.93.84.24.5STL1

1.30.70.70.70.70.60.75.83.34.24.4LDL1

10.16.26.16.16.16.15.10.70.810.611.5STL2

6.23.84.83.64.33.53.90.80.67.77.7LDL2

4.24.33.93.93.84.24.311.88.82.42.3STM

5.14.24.44.24.34.44.611.47.92.41.8LDM

DIVMULSUBADDNOISTL1LDL1STL2LDL2STMLDM
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RpStacks:
Fast and Accurate 
Processor Design Space Exploration 
Using Representative Stall-Event Stacks

Jaewon Lee, Hanhwi Jang, and Jangwoo Kim

POSTECH
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Slow

Expensive
…

Deadline



Simultaneous representative-path analysis

Instruction

Pi
pe

lin
e

div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …, 
beq, R7, R0, Ntaken, Timing: …, 
add, R6, R1, Timing: 1, 5, 6, 6, …
…

Simulation
Information
(Baseline)

Dependency & Stall cycles
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div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …, 
beq, R7, R0, Ntaken, Timing: …, 
add, R6, R1, Timing: 1, 5, 6, 6, …
…

Cycles: 100 Cycles: 80



Simultaneous representative-path analysis
div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …, 
beq, R7, R0, Ntaken, Timing: …, 
add, R6, R1, Timing: 1, 5, 6, 6, …
…

Cycles: 90 Cycles: 110
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add, R6, R1, Timing: 1, 5, 6, 6, …
…
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Simultaneous representative-path analysis
div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …, 
beq, R7, R0, Ntaken, Timing: …, 
add, R6, R1, Timing: 1, 5, 6, 6, …
…

RpStacks

Event1     Event2     Event3



Fast and accurate
 Fast

x26 speedup vs. simulator
(1,000 design point testing)

 Accurate
vs. traditional simulation result analysis

Main auditorium
16th /  9:15 AM
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GPUMech: GPU Performance Modeling 
Technique based on Interval Analysis 

Jen-Cheng Huang, Joo Hwan Lee, Hyesoon Kim, Hsien-Hsin S. Lee 
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Can we quickly find bottlenecks of hardware configurations 
without time-consuming detailed timing simulation? 
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Approach: GPUMech 
•  Use analytical modeling to model performance 

•  Use functional simulation to identify stall events 

•  Visualize performance bottlenecks using CPI stack 

•  97x Speed Up over detailed timing simulation 

   (Error: 13.2%) 

Session 3A: Methodology, Modeling and Tools 
Tue 09:15 – 10:30 
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CALCULATING ARCHITECTURAL 

VULNERABILITY FACTORS 

FOR SPATIAL MULTI-BIT 

TRANSIENT FAULTS 

Mark Wilkening1, Vilas Sridharan2, Si Li3, Fritz Previlon1, Sudhanva 

Gurumurthi4 and David R. Kaeli1 

 

1ECE Department, Northeastern University, Boston, MA, USA 
2RAS Architecture, Advanced Micro Devices, Inc., Boxborough, MA, USA 

3ECE Department, Georgia Institute of Technology, Atlanta, GA, USA 
4AMD Research, Advanced Micro Devices, Inc., Boxborough, MA, USA 
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INTRODUCTION AND MOTIVATION 

 Particle-induced transient faults in SRAM are the dominant contributor to 

microprocessor faults [Baumann 2005] 

 High energy particles deposit charge in silicon  

 This can invert the state of logic devices and cause one or more bit flips 

 

 Multi-bit transient faults have become more important as technology 

scales  

 Number and size of multi-bit faults is increasing [Ibe 2010] 

 Trend will continue despite FinFETs [Seifert 2012] 

 

 Methods to characterize the impact of multi-bit faults are lacking 



3 |  December 2014 

WHAT IS THIS PAPER ABOUT? 

 We introduce architectural vulnerability factors for multi-bit transient faults (MB-

AVFs) 

 We measure MB-AVFs for detected, uncorrected errors (DUE MB-AVF) 

 We approximate MB-AVFs for silent data corruption (SDC MB-AVF) 

 We show how MB-AVFs can be used to make design trade-offs 
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Using ECC Feedback to Guide 
Voltage Speculation in 

Low-Voltage Processors

Anys Bacha and Radu Teodorescu
Department of Computer Science and Engineering
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Scott Mahlke 

 
Advanced Computer Architecture Laboratory 
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Acceptable Vs. Unacceptable Outputs 
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Particle Strike Electrical Noise 

Goal: Reduce unacceptable 
outputs at low-cost  

PSNR > thr 

PSNR < thr 
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Selective Duplication and Value Checks 

• Duplication for critical 
variables 

•  Exploit value locality and 
check for deviations 
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Skewed Compressed Cache        Micro 2014 

Decoupled Compressed Cache                   Micro 2013  

Skewed   TLB                                           IEEE TC 2004 

Somayeh Sardashti     André Seznec       David A. Wood 
 

  UW-Madison                     INRIA/IRISA                UW-Madison 



2 

From Decoupled Compressed Cache: 
•  Compression factor  is a spatial property 
•  Leverage superblocks to limit tag overhead 
•  Complex look-up and replacement management 
•  Meta data overhead 

From Skewed TLB: 
•  A mutiple grain structure  in a N-way (skewed) cache 

•  The analogy:  
At read time, page size (compression factor) is unknown 

What did we borrow? 
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4 

•  Leverages spatial compression factor locality 
•  « x 2 » the LLC  size 

•  Direct tag-data mapping  
•  Simple allocation/replacement automaton 
•  No meta-data, only 1.6 % storage overhead 
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Adaptive Cache Management 
for Energy-efficient GPU Computing

§  Many cache sensitive GPU applications have severe cache 
contention → low cache efficiency → poor performance 
–  Smaller L1 cache capacity per thread 

§  Existing management schemes have limitations 
§  We propose Coordinated Bypassing and Warp Throttling 

(CBWT) to improve GPU cache efficiency 
–  Reduce cache contention rate and NoC latency  

Xuhao Chen1,2,3, Li-Wen Chang3, Chris Rodrigues3, Jie Lv3, Zhiying Wang1,2, Wen-Mei Hwu3 

[1] State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China 
[2] School of Computer, National University of Defense Technology, Changsha, China 
[3] Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA 
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Observations – Understanding the Limitations 
§  Cache bypassing retains 

useful cache lines instead of 
replacing upon miss 
ü Retain useful data → fewer

 cache misses per thread 
² Average HCS speedup 1.57x 

X  High demand on NoC to serve
 misses, i.e. congestion 

X  Still cannot avoid locality loss 

§  Warp throttling temporarily 
deactivates some threads 
ü Fewer threads → more cache

 per thread → fewer misses 
X  Few threads → cannot hide

 latency through multithreading 
X  Resource under-utilization  0
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CBWT Architecture Overview 
§  Extra sampling modules 

(yellow blocks) are added 
to monitor contention and 
congestion. 

§  Adjust the MAW to keep 
the network in a busy but 
low-congestion range. 



Performance and Energy-efficiency 

§  CBWT achieves an average of 74% (maximum 661%) IPC 
improvement on HCS benchmarks over baseline, which 
significantly outperforms PDP bypassing (42%) and Best-SWL 
(52%).  
–  PDP bypassing: pure cache bypassing 
–  Best-SWL: pure warp throttling 

§  CBWT outperforms the baseline with an average of 58.6% Perf/
Watt improvement 
–  On average, PDP bypassing can reduce 16.5% of DRAM traffic, 
–  CBWT reduces DRAM traffic by 54.9% 

§  Welcome to Session 4A in Main Auditorium on Dec. 16 
(Tuesday) at 11:10 AM for more details 
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For each partition  
✦ Precisely control its size (fine-grain) 
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Hundreds of partitions

Problem: How to efficiently divide a 
cache into hundreds of partitions?
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Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 3 Partition 4

Control the partition size by 
adjusting eviction rate at 

replacement
✔Able to support many 

fine-grain partitions

How to precisely partition the 
cache while still maintaining 

high associativity?
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Futility Scaling
Basic idea: control the size of each partition by properly 
scaling the futility of its cache lines 

Intuition:  
Scaling up futility → cache lines are evaluated as less 
useful → lower probability to be kept in the cache → 
partition size is reduced 

More details are in our tomorrow’s talk: 
✤ Futility estimation 
✤ Scaling factor adjustment 
✤ Feedback-based implementation



Tomorrow at 10:45am in Session 4A 
“TLB and Cache Optimization”

Futility Scaling: High-
Associativity Cache Partitioning

Ruisheng Wang — University of Southern California 
Lizhong Chen    — Oregon State University



next	
  paper	
  



© 2014 IBM Corporation

Voltage Noise in Multi-core Processors:
Empirical Characterization and 
Optimization Opportunities

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

15 December 2014

Ramon Bertran1, Alper Buyuktosunoglu1, Pradip Bose1,
Timothy J. Slegel2, Gerard Salem2, Sean Carey2,
Richard F. Rizzolo2, Thomas Strach2

1IBM Research
2IBM Systems & Technology Group

Full presentation:
Session 4B Managing Voltage and Time
Tomorrow at 10:45AM
Umney Theatre & Lounge room



© 2014 IBM Corporation

Voltage noise: Transient variations in supply voltage

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room



© 2014 IBM Corporation

Voltage noise: Transient variations in supply voltage

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room

Goal: define and validate an operating voltage 
ensuring robust performance without being 

overly conservative



© 2014 IBM Corporation

Voltage noise: Transient variations in supply voltage

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room

Goal: define and validate an operating voltage 
ensuring robust performance without being 

overly conservative

§Pre-silicon characterization is inadequate

§A systematic, direct measurement-based 

characterization is required



© 2014 IBM Corporation

Voltage noise: Transient variations in supply voltage

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room

Goal: define and validate an operating voltage 
ensuring robust performance without being 

overly conservative

§Pre-silicon characterization is inadequate

§A systematic, direct measurement-based 

characterization is required

Our work: Systematic noise 
characterization and exploration of 

optimization opportunities on zEC12

IBM 

mainframe

processor
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Characterization of noise

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room



© 2014 IBM Corporation

Do you want to understand voltage noise?

When: 

Tomorrow, Tuesday 16th, Dec 2014 

at 10:45AM

Where:

Umney Theatre & Lounge

Session 4B - Managing Voltage and Time

Please come to our poster session too!

The 47th Annual IEEE/ACM International Symposium on Microarchitecture
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Enabling Realistic Fine-Grain Voltage Scaling with
Reconfigurable Power Distribution Networks
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I Enabling per-core voltage regulation while
mitigating large regulator area overhead
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I Providing fast voltage transition times
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Micro-sliced Virtual Processors 
to Hide the Effect of Discontinuous CPU Availability 

for Consolidated Systems

Jeongseob Ahn, Chang Hyun Park, and Jaehyuk Huh

Computer Science Department

KAIST

Tomorrow, Session 4B, paper3 @ Umney Theatre

1



Virtual Time Discontinuity

vCPU 1

Virtual time

Physical timepCPU0

vCPU 0
Time slice

Context Switching

Virtual CPUs are not always running

2



Interrupt with Virtualization
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Spinlock with Virtualization

vCPU 1

pCPU0

vCPU 0
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2

Lock acquiring is delayed



Toward Virtual Time Continuity

vCPU 1

vCPU 0

pCPU0

Shortened time slice

T

Short, but more frequent runs
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Toward Virtual Time Continuity
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Interrupt
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Interrupt is handled sooner

3



Toward Virtual Time Continuity

vCPU 1

vCPU 0

pCPU0 T

Lock is acquired sooner

3



Overheads of Short Time Slice 

vCPU 1

vCPU 0

pCPU0

Frequent context switching

Pollution of architectural structures 

T

$ $ $

4
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SMiTe: Precise QoS Prediction on Real-System SMT Processors 
to Improve Utilization in Warehouse Scale Computers

Yunqi Zhang, Michael A. Laurenzano, Jason Mars, Lingjia Tang

Clarity-Lab 
Electrical Engineering and Computer Science 
University of Michigan
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Data centers are expensive

Low utilization leads to inefficiency

30%
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SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

< 2% 
Prediction Error

42% 
Utilization Improvement

Section 5A 
Wednesday at 9:50 A.M.
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A Front-end Execution Architecture for

High Energy Efficiency

Ryota Shioya*, Masahiro Goshima+, and Hideki Ando*

* Nagoya University

+ National Institute of Informatics



2

Front-end Execution Architecture (FXA)

Background:

OoO superscalar processors are fast, 

but their energy efficiency is low

Even in heterogeneous architecture, big cores still 

consume a large amount of energy

Goal:

Improving the energy efficiency of OoO SSPs

Approach:

Execute instructions in-order in a front-end



FXA has two execution units: IXU and OXU 

3
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FXA

FU

FU

FU

FU

FU

OoO Ex. Unit

(OXU)

In-order Ex. Unit

(IXU)
IXU functions as 

a filter to OXU

Shrink 

Back-end

Add FUs to front-end

Executes insns. in-order



4

FXA’s merit: improving energy efficiency

Merits:

FUs can be added to the IXU with low overhead, 

and it improves performance

The IXU can execute over 50% insns in-order

The energy-consuming OXU is shrunk

Compared to Cortex A-57 (big) 

5.7% higher IPC and 17% lower energy 

consumption 

25% higher performance energy ratio

(=the inverse of EDP)
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Execution Drafting 

Michael McKeown, Jonathan Balkind, David Wentzlaff 

Princeton University 

 

MICRO-47 

Wednesday, December 17, 2014 – Session 5A – 9:50am 
 

Energy Efficiency Through Computation Deduplication 



Motivation 

• Cloud Computing 

 

 

• Data Center Energy 
Efficiency 

 

• Computation Deduplication 

– Commonality in Applications 

 

 
MICRO-47 December 17, 2014 2 

Source:http://www.google.com/about/datacenters/gallery/ima
ges/_2000/CBF_009.jpg 



Execution Drafting 

3 

Program A Instruction Program B Instruction 

Fetch Stage Thread Select 
Stage 

Decode Stage Execute Stage Memory Stage Writeback 
Stage 

Successfully Drafted 
Instructions  

Lead Instructions  
MICRO-47 December 17, 2014 

Microarchitectural mechanism to improve energy efficiency in a 
multithreaded core 

Goal: Maximize 
𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆

𝑬𝒏𝒆𝒓𝒈𝒚
 

 



Main Results 

• Up to 20% performance/energy gain 

 

• Minuscule performance  

    degradation 

 

• Small area overhead 

 

• Potential in drafting more threads 

4 MICRO-47 December 17, 2014 

Wednesday, December 17, 2014 – Session 5A – 9:50am 
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PPEP: ONLINE PERFORMANCE, POWER, AND  

ENERGY PREDICTION FRAMEWORK  

Bo Su†  Junli Gu‡   Li Shen†  Wei Huang‡  Joseph L. Greathouse‡  Zhiying Wang† 

and DVFS Space Exploration 

†National University of Defense Technology         ‡AMD Research 

 Dynamic Voltage & Frequency Scaling Challenge 

‒How to predict performance & power across VF states 
 

 Difficulties on modern processor 

‒Multiple clock domains 

‒Multiple power planes 

Cores 

North Bridge 

AMD FX-8320 

Core  

Clock Domain  

& Power Plane 

North Bridge  

Clock Domain  

& Power Plane 

Scalable Not scalable 

Cores 

Cores Cores 



Q1: PERFORMANCE PREDICTION 

 LL-MAB: Miss Address Buffer (MAB) based 
Leading Loads (LL) CPI Predictor; 

Core 

& 

L1$ 

L2$ 

L3$ 

&  

DRAM 

Core Clock Domain Other Clock Domains 

MAB0 

MAB1 

MAB2 

… 
MABn 

MAB0 
MAB1 
MAB2 

VF5 

VF4 

VF3 

VF2 

VF1 

CPI(VF5) 

CPI(VF3) 

CPI(VF2) 

CPI(VF1) 

Performance Power 

CPI(VF4) 

Power(VF5) 

Power(VF3) 

Power(VF2) 

Power(VF1) 

Power(VF4) 

Performance 

prediction? 

Core VF State 

Running at: Running at: 

3.2% error  

>2X freq. diff.  

Lower 

Higher 



Q2: POWER PREDICTION 

 Power model: CPU Events + Temperature  

 Power prediction: LL-MAB + 2 observations of CPU 
events. 

 4.2% error across 5 VF states. 

CPI(VF5) 

CPI(VF3) 

CPI(VF2) 

CPI(VF1) 

Performance Power 

Power(VF5) 

Power(VF3) 

Power(VF2) 

Power(VF1) 

Power(VF4) 

CPU Power 

prediction? 

Running at: Running at: 

Wednesday 11:05AM 

CPI(VF4) 
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VF1 

Core VF State 
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1

Hi-Rise: A High-Radix Switch for 3D 
Integration with Single-cycle Arbitration

Supreet Jeloka, Reetuparna Das, Ronald G. Dreslinski, 
Trevor Mudge, David Blaauw

University of Michigan, Ann Arbor

Conventional
Switch 

Hi-Rise

Hop Count Delay
Many-core systems 
 Low-radix not scalable
Goal: 3D High-radix switch 

Radix



2UNIVERSITY OF MICHIGAN

2D & 3D Switch Designs

2D Design 2D Partitioned

3D Stacking 3D Switch



3UNIVERSITY OF MICHIGAN

3D Switch Design Challenges 

Local

Inter
-Layer 

In
pu

ts

Outputs

Efficient High Radix 3D switch requires
Optimized datapath for connection heterogeneity
Fair low-cost arbitration for multi-stage switch

TS
V

TS
V



4UNIVERSITY OF MICHIGAN

True 3D Switch
Hierarchical datapath  
Reduced TSVs

Class-based arbitration
Composable
Single cycle & Built-In

 64-Radix 4-Layer Hi-Rise
 2.2 GHz,10.65 Tbps
 44pJ / 128-bit transaction
 13% System speedup over FBFly

Proposed 3D-Switch: Hi-Rise 
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Multi-GPU System Design with Memory Networks

Gwangsun Kim, Minseok Lee, Jiyun Jeong, John Kim

Department of Computer Science, KAIST

Data sharing cost is high.

Programming can be challenging.
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Multi-GPU System Design with Memory Networks

Gwangsun Kim, Minseok Lee, Jiyun Jeong, John Kim

Department of Computer Science, KAIST

High Data transfer overhead
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How to design the different networks?

Impact on multi-GPU programming?
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Scalable Kernel Execution

GPU

Kernel

Kernel

Source code

Modification

GPU GPU

GPU GPU

Kernel

Virtual GPU

Session 5B: Interconnects

(Wednesday)
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Dodec: Random-Link, Low-Radix On-Chip Networks 
 

Haofan Yang, Jyoti Tripathi, Natalie Enright Jerger, Dan Gibson 
 

Session 5B: Wednesday @ 11:05 



On-Chip Network Routers 

4-ported router 
©	
  umnet.com	
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4-ported router 

Many-ported router 
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On-Chip Network Routers 

4-ported router 

Many-ported router 

Simple 3-ported router 
©	
  muppet.wikia.com	
  



Topological Choices	
  

2D	
  Mesh:	
  regular,	
  grid-­‐like	
  

•  Grid cities: government designed 

©	
  wxs.ca	
  



Topological Choices	
  

©	
  city-­‐data.com	
  
•  Grid cities: government designed 
•  Non-grid cities: grow organically based on how people 

use them 
•  Similarly, we consider irregular network structures that 

might be more useful on-chip 



Simple Routers + Irregular Networks!	
  

Dodec: Random-Link, Low-Radix On-Chip Networks 
 

Session 5B: Wednesday @ 11:05 
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Wormhole: Wisely Predicting  
Multidimensional Branches

Jorge Albericio,  
Joshua San Miguel,  

Natalie Enright Jerger, and Andreas Moshovos

Wednesday. 13:00 
Session 6A
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Dibakar Gope  &  Mikko H. Lipasti 

University of Wisconsin – Madison 
 

MICRO 2014 
 

Bias-Free Branch Predictor 



Why Another Branch Predictor? 

Predictor consumes ~15% of core energy (ARM’s Cortex A15) 2 

Correlations to ~256 branches Access to several tables  



Our Solution: Filter Useless Context Out 
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Conventional 
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Our Solution: Filter Useless Context Out 

4 

Conventional 

Predictor Table 
….. 

….. Bias-Free 

Predictor 

Table 

Filter 

Useless Info 

GHR: 

BF-GHR: 

Bias-Free Pred: 

smaller 

compressed 

Expand the effective reach of fixed length GHR 



Our Solution: Bias-Free Branch Predictor 
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Our Solution: Bias-Free Branch Predictor 

6 

5-6% 

Improvement 

over OH-SNAP 

TAGE-like 

accuracy w/ 

fewer tables 

• What is useless information? 

 

• How prevalent is it? 

 

• How to make it work 

Session 6A 

 

WEDNESDAY 

@ 1:25 PM 

Neural TAGE 
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Loop-Aware Memory Prefetching  

Using Code-Block Working Sets 

*Prefetch in Bulk and Listen to Your Mother 
 

 

Adi Fuchs      Shie Mannor      Uri Weiser      Yoav Etsion 

Electrical Engineering Computer Science 

Technion – Israel Institute of Technology 

 

 



Prefetch Aggressively on Tight Loops 
(i.e., Prefetch in Bulk) 

• Observation: 
Working sets of tight loop 
iterations (CBWS) are highly 
interdependent 

 

• Means: 
Vector arithmetic to compute 
CBWS differential vectors 

 

• Objective: 
Prefetch complete CBWS when 
possible 

 



The Compiler Identifies Tight Loops 
(i.e., Listen to Your Mother) 

 

“The compiler is your mother” 

    Y. Patt 

 

• The compiler tells us when 

to use tight loop prefetcher 
– Otherwise, fallback to high-

performance SMS prefetcher  

for( …)  { 

    for( … ) { 

        BLOCK_BEGIN(0); 

  

 … 

  

        BLOCK_END(0); 

    } 

} 



Speedup 
Over 1.3x over SMS 
for memory intensive  
benchmarks 
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BuMP: Bulk Memory Access Prediction and Streaming 
Stavros Volos, Javier Picorel, Babak Falsafi, Boris Grot 
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BuMP: Bulk Memory Access Prediction and Streaming 
Stavros Volos, Javier Picorel, Babak Falsafi, Boris Grot 

Datacenters: The Workhorses of Information Age  

Electricity bills of $25 Billion per year 



User Requests are Data-Intensive 



User Requests are Data-Intensive 



Vast DRAM-resident 
datasets 

User Requests are Data-Intensive 



DRAM serves many 
requests 

DRAM: Major energy hog in datacenters 

Vast DRAM-resident 
datasets 

User Requests are Data-Intensive 
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posts 

database  
rows 

Datasets Have Different Flavors 

index 
pages 

videos 

images 

Common: DRAM is accessed in bulk 
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Bulk Memory Access Prediction and Streaming 

Prediction: Identify bulk accesses 
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For a 16-core server running datacenter applications 

23% lower DRAM energy 
11% higher throughput 



BuMP 
Bulk Memory Access Prediction and Streaming 

Prediction: Identify bulk accesses 
 

Streaming: Trigger bulk transfers to exploit locality 

For a 16-core server running datacenter applications 

23% lower DRAM energy 
11% higher throughput 

Session 6A, Wednesday at 2:15 PM 
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Protean Code: Achieving Near-free 
Online Code Transformations for 
Warehouse Scale Computers
Michael A. Laurenzano 
Yunqi Zhang 
Lingjia Tang 
Jason Mars 

!
Electrical Engineering and Computer Science 
University of Michigan 
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Dynamism is everywhere

Datacenter

Mobile

Desktop

Program phases

User behavior varies

Apps begin and end

Unreliable hardware

Native code should change with the environment 

Not possible today in production environments 
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Protean code is a breakthrough 
•  Compilation is asynchronous with near-zero overhead 
•  Dynamic code optimization is always available 
•  Static compilation choices do not have to be permanent

Come to my talk to hear about 
• A new paradigm for thinking about compilation 
• A fully functional, open source dynamic compiler infrastructure 

implemented on top of LLVM 
• A novel dynamic optimization that reduces the # of servers in the 

datacenter by > 25%



Protean code is a breakthrough 
•  Compilation is asynchronous with near-zero overhead 
•  Dynamic code optimization is always available 
•  Static compilation choices do not have to be permanent

Come to my talk to hear about 
• A new paradigm for thinking about compilation 
• A fully functional, open source dynamic compiler infrastructure 

implemented on top of LLVM 
• A novel dynamic optimization that reduces the # of servers in the 

datacenter by > 25%

Session 6B, Wednesday 1:00pm
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Compiler Support for Optimizing 
Memory Bank Level-Parallelism

Wei Ding, Diana Guttman, and Mahmut Kandemir

The Pennsylvania State University

• Last-level cache misses (memory accesses) are 
important for good performance, but current 
compilers focus on cache locality only

• Bank-level parallelism of LLC misses is critical to 
performance

 How can a compiler optimize for bank-level 
parallelism on a multicore processor?



Loop Tiling

Bank-Level Parallelism

i

j
data 
dependence

iteration 
point

tile

for i = 1..N
for j = 1..N

X[i,j] = X[i,j-1] + X[i-1,j-1]

i

j
data 
dependence

iteration 
point

Compiler Support for Optimizing Memory Bank Level-Parallelism

Bank 0 Bank 1 Bank 2 Bank 3

Row-buffers

X[1,3]  X[1,4]



Dependence-free 
Tile Sets

Dependence 
Analysis

Cache 
Locality 

Optimizations 

Tiling and 
Parallelization

Per-Tile 
Cache Miss 
Prediction

Tile 
Scheduling 

for BLP

Low-level 
Optimizations

Compiler Support for Optimizing Memory Bank Level-Parallelism

…

…

Cache 
Miss 

Equations

Banks 
accessed by 

each tile

Tile 
Size



Compiler Support for Optimizing 
Memory Bank Level-Parallelism

Average bank-level parallelism improvement of 17.1%

Average memory access latency reduction of 9.2%

Please come to the full-length presentation!
• Extensions to consider memory controller-level 

parallelism and row-buffer locality

• Algorithm details

• Detailed results

Session 6B: Compilation 
and Code Generation
Wednesday,  December 17
13:00 - 14:40
Room: Umney Theatre
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Architectural Specialization for
Inter-Iteration Loop Dependence Patterns

Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu
Zhiru Zhang, Christopher Batten

Computer Systems Laboratory
School of Electrical and Computer Engineering

Cornell University

47th Int’tl Symp. on Microarchitecture, Dec 2014
Session 6B: Compilation and Code Generation



• Problem • Solution Results

Loop Dependence Pattern Specialization

Iteration
0

inst0
inst1
inst2
inst3
...
branch

Iteration
1

inst0
inst1
inst2
inst3
...
branch

inst0
inst1
inst2
inst3
...
branch

Iteration
2

inst0
inst1
inst2
inst3
...
branch

Iteration
3

inst0
inst1
inst2
inst3
...
branch

Iteration
n-1

Intra-Iteration
Micro-op Fusion,

ASIPs, CCA

Inter-Iteration
Subword-SIMD,

Vector, GPU

Both
DySER, Qs-Cores,

BERET

Key Challenge: Creating HW/SW abstractions that are
flexible and enable performance-portable execution

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 2 / 4



Problem • Solution • Results

loop:
  lw        r4, 0(r3)
  lw        r5, 0(rA)
  mul       r6, r4, r5
  addu      rX, r6, rX
  sw        rX, 0(r3)
  addiu.xi  r3, 4
  addiu.xi  rA, 4
  addiu     r1, r1, 1
  xloop.orm r1, rN, loop

Iteration 0

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 1

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 2

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 3

inst0
inst1
inst2
inst3
...
xloop.orm

XLOOPS ISA
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  sw        rX, 0(r3)
  addiu.xi  r3, 4
  addiu.xi  rA, 4
  addiu     r1, r1, 1
  xloop.orm r1, rN, loop

Iteration 0

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 1

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 2

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 3

inst0
inst1
inst2
inst3
...
xloop.orm

XLOOPS ISA

#pragma xloop ordered
for ( X=0, i=K; i<N; i++ )
{
  A[i] = A[i] * A[i-K];
  X += A[i];
}

XLOOPS Compiler
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loop:
  lw        r4, 0(r3)
  lw        r5, 0(rA)
  mul       r6, r4, r5
  addu      rX, r6, rX
  sw        rX, 0(r3)
  addiu.xi  r3, 4
  addiu.xi  rA, 4
  addiu     r1, r1, 1
  xloop.orm r1, rN, loop

Iteration 0

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 1

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 2

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 3

inst0
inst1
inst2
inst3
...
xloop.orm

XLOOPS ISA

#pragma xloop ordered
for ( X=0, i=K; i<N; i++ )
{
  A[i] = A[i] * A[i-K];
  X += A[i];
}

XLOOPS Compiler
OoO GPP

L1 Data Cache

Lanes

Lane Manager

Mem XBar

XLOOPS Microarchitecture

Single-ISA hetereogenous architecture that transparently integrates
traditional processors and specialized loop-accelerators

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 3 / 4



Problem Solution • Results •

OoO GPP

L1 Data Cache

I Traditional Execution
Speedups close to 1×
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OoO GPP

L1 Data Cache

Lanes

Lane Manager

Mem XBar

I Traditional Execution
Speedups close to 1×

I Specialized Execution
Speedups 1.25–2.5×
Energy Efficiency 1.5–3×
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OoO GPP

L1 Data Cache

OoO GPP

L1 Data Cache

Lanes

Lane Manager

Mem XBar

I Traditional Execution
Speedups close to 1×

I Specialized Execution
Speedups 1.25–2.5×
Energy Efficiency 1.5–3×

I Adaptive Execution
Dynamically Trade
Peformance vs. Energy Efficiency
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Specialized Adaptive
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Specializing Compiler Optimizations 
Through Programmable Composition For 

Dense Matrix Computations 

Qing Yi, Qian Wang, Huimin Cui 

University of Colorado, Colorado Springs, USA 

Institute Of Software & Institute of Computing, Chinese 
Academy of Science 

MICRO-2014 1 



Motivation 
•  What’s wrong with general purpose compilers?  

–  Target all possible user applications 
Try to attain the best average performance 
Inferior to manual specialized optimizations 

•  Independent optimization passes  

 
 
 
 

–  Unpredictable Interferences among optimizations 
Information loss from re-analyzing optimized code 
Best optimization order is NP-complete 

Loop 
Optimizations 

Register 
Allocation 

Instruction 
Scheduling/
selection 

Loop unrolling/ 
SIMD Vectorization 

Redundancy 
Elimination 

12/17/2014 MICRO-2014 2 



Overcoming The Uncertainties 
•  Programmable composition of compiler optimizations 

–  Eliminate optimization interferences 
Analyze the original input source code only once  
Enable fine-grained coordination among optimization passes  

–  Pattern-based Specialization 
Recognize known computational patterns 
Specialize optimization customization and ordering 

12/17/2014 MICRO-2014 3 

parallelize l1 
Loop unrolling 

Redundancy Elimination: 
address calculations of 
A[k*lda+i], B[j*ldb+k], 
C[j*ldc+i] 

peephole opt 
SIMD Vectorization: l3 Array copy:alpha*A[k*lda+i]  

Scalar Replacement: A[k*lda+i], B[j*ldb+k], C[j*ldc+i] 

Block l1-l3 

Unroll&jam l1-l3 

Loop splitting:remove 
conditionals in loops) 

Input AST (source code) + Coordination Handles + Tags 



Optimization Workflow 

•  Specialized optimization for dense-matrix kernels 
–  Applied to 15 BLAS kernels and 15 applications in SPLASH-2 
–  Kernel performance comparable to manual assembly programming 

12/17/2014 MICRO-2014 4 

Vendor 
Compiler  
(icc/gcc) 

Optimized code 

No pattern 

Coordinated 
Optimization 

Pattern 
Analysis 

Conventional compiler 
optimization phases 

Opt  configuration 

Pattern-annotated code 

Collective 
Customization 

Optimized code 
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 A Machine-Learning Supercomputer

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, 
Liqiang He, Jia Wang, Ling Li, Tianshi Chen, 

Zhiwei Xu, Ninghui Sun, Olivier Temam



DNN: State-of-the-art Machine-
Learning Algorithm



Hardware for DNNs
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Hardware for DNNs

× memory      access

A Supercomputer for DNNs
w/o memory access!

大电脑



Experimental Results

 
large speedups

energy saving



Experimental Results

See you in session 7

 
large speedups

energy saving



next	
  paper	
  



B-Fetch: Branch Prediction Directed 
Prefetching for Chip-Multiprocessors 

David Kadjo1, Jinchun Kim1, Prabal Sharma2, Reena Panda3, 
Paul V. Gratz1, Daniel Jiménez4 

1 Department of Electrical and Computer Engineering, Texas A&M University 
2 Samsung R&D, Austin  3 Department of Electrical and Computer Engineering, University of Texas, Austin 

4 Department of Computer Science & Engineering, Texas A&M University 



Juicy 
Enough? 

Start( ) 

Turkey Recipe 

End( ) 

Program: ./make Christmas_turkey 

Spicy 
Enough? 

Gravy 

Pepper 

Decisions while cooking change 

the flavor of the turkey 
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TOO FAR AWAY 
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Spicy 
Enough? 

Gravy 
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B-Fetch 
Lookahead 

Prefetch 

Branch & Reg 
Information 

Refrigerator 
(Cache) 

Market 
(DRAM) 



Juicy 
Enough? 

Start( ) 

Turkey Recipe 

End( ) 

Program: ./make Christmas_turkey 

Spicy 
Enough? 

Gravy 

Pepper 

Gravy (45ml) 

Pepper (20g) 

B-Fetch 
Lookahead 

Prefetch 

Branch & Reg 
Information 

Refrigerator 
(Cache) 

Market 
(DRAM) 



B-Fetch: Prefetching based on 
                Branch Prediction 

•  Path Speculation and Effective Address Speculation 
–   Path speculation based on branch lookahead 

–   Effective address speculation based on architectural register files 
 

•  Light weight prefetcher leverages branch prediction 
–   Provide 28% speed-up compared to the baseline without 

 data prefetching 
–   9% speed-up and 65% less storage than SMS [Somogyi 2006] 

–   Join discussion at the Best Paper Section! 
 Dec. 17th (Wednesday) 3PM at Main Auditorium 
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Lustig, Pellauer, Martonosi, “PipeCheck” 

PipeCheck: Specifying and Verifying 
Microarchitectural Enforcement of 

Memory Consistency Models 

Session 7 (Best Paper Nominees), Paper 3, Wed @ 4pm 

Princeton University Intel VSSAD 
Daniel Lustig, Michael Pellauer, Margaret Martonosi 



Lustig, Pellauer, Martonosi, “PipeCheck” 

Motivation: Verify correctness of memory 
consistency model implementation 

CPU CPU 

CPU CPU 

Main Memory 

L2$ 

Model:	
  TSO	
  



Lustig, Pellauer, Martonosi, “PipeCheck” 

Motivation: Verify correctness of memory 
consistency model implementation 

CPU CPU 

CPU CPU CPU CPU 
CPU CPU 

Acc. 
DSP 
DSP 

Main Memory 

L2$ L2$ L2$ L2$ L2$ 

GPU GPU 
GPU GPU 

GPU 
GPU 
Model:	
  “Weak”?	
  Model:	
  ARM	
  

Model:	
  TSO	
  
Models:	
  ???	
  

•  Heterogeneity	
  à	
  even	
  harder	
  to	
  verify!	
  



Lustig, Pellauer, Martonosi, “PipeCheck” 

Architecture-Level Analyses Cannot 
Distinguish Between Implementations 

Initially: [x]=[y]=0 
Core 0 Core 1 

(i1) st [x], 1 
(i2) st [y], 1 

(i3) ld [y] à r1 
(i4) ld [x] à r2 

TSO: Forbid: r1=1, r2=0 

i1 

i2 

i3 

i4 

PPO PPO 

From-reads 
[Alglave, FMSD ’12, Owens et al., TPHOLs ‘09] 

•  Arch.-­‐level	
  models	
  
cannot	
  analyze/verify	
  
the	
  behavior	
  of:	
  
– Out-­‐of-­‐Order	
  
Execu@on	
  

– Specula@ve	
  load	
  
reordering	
  

– Other	
  µarch.	
  
op@miza@ons	
  



Lustig, Pellauer, Martonosi, “PipeCheck” 

PipeCheck: Verifying Microarchitectural 
Enforcement of Consistency Models 

Writeback 

Memory 

Store 
Buffer 

Memory 
Hierarchy 

Loads 
Execute 

Decode 

Fetch 

•  Verify	
  a	
  given	
  µarch	
  w.r.t.	
  architectural	
  spec.	
  
•  Successes:	
  fast	
  automated	
  verifica@on;	
  bugs	
  found	
  

i1 

i2 

i3 

i4 

PPO PPO 

From-reads 

µarch	
  happens-­‐
before	
  graphs	
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Equalizer: Dynamically Tuning 
GPU Resources for Efficient 

Execution  

Ankit Sethia*          Scott Mahlke 
University of Michigan 

University of Michigan 
Electrical Engineering  and Computer Science 



Imbalanced GPU resource utilization 
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Imbalanced GPU resource utilization 



Large number of threads cause early 
saturation of some resources 
and under-utilization of others 

Imbalanced GPU resource utilization 



Boost bottleneck resource for 
performance improvement 

Opportunity 1: 

Throttle under-utilized 
resources for energy savings 

Opportunity 2: 

Kernels saturate one resource 
much faster than others 



Kernels saturate one resource 
much faster than others 

•  Observe kernel’s hardware 
requirements 

•  Modulate hardware through: 
!  Core frequency 
!  Memory frequency  
!  Number of threads  



Equalizer 
Decode Equalizer Issue 

Counters 
I - buffer 

•  Calculate state of warps over window of cycles 
•  Request new hardware parameters 

Algorithm Request new 
parameters 

State of 
warps 



Equalizer 
Decode Equalizer Issue 

Counters 
I - buffer 

•  Calculate state of warps over window of cycles 
•  Request new hardware parameters 

Algorithm Request new 
parameters 

State of 
warps 

Boosting bottleneck resources: 
22% speedup, 6% energy overhead 
Throttling under-utilized resources: 
15% energy savings, 5% speedup 
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1 

COMP: Compiler Optimization for 
Manycore Processors 

§  We are entering manycore era 
–  Intel Xeon Phi, Tilera processors, etc. 
–  Used as coprocessors 

Linhai Song1, Min Feng2, Nishkam Ravi3, Yi Yang2 and Srimat Chakradhar2	

1University of Wisconsin-Madison 
2NEC Laboratories America 
3Cloudera Inc.	


PCIe 

CPU Host Coprocessor 
Intel Xeon Phi 

•  61 in-order cores 
•  512-bit wide SIMD 

instructions and registers 
•  4*61 = 244 hardware threads 



Performance Bottleneck: Data 
Transfer Overhead 

2 

#pragma offload target(mic:0)\ 
  in(sptprice, …:length(numOptions))\ 
  out(prices:length(numOptions)) 
#pragma omp parallel for private(i, price) 
for (i=0; i<numOptions; i++) { 
   price = BlkSchlsEqEuroNoDiv( 
                                       sptprice[i], …, 0); 
   prices[i] = price; 
}                               

Time 

Transfer: 

Computation: 

0 

0.5 

1 

1.5 

2 

2.5 

Transfer Calculation 

Time breakdown for Blackscholes 

Computation 



Our Compiler Optimizations 

§  Data streaming 
–  Automatically overlap data transfers and computations to 

reduce data transfer overhead  
–  Designed to minimize the device memory usage while 

maximizing the performance 
–  Avoid the overhead of launching the same kernel for multiple 

times 

§  Regularization 
–  Enable data streaming in the presence of irregular accesses 
–  Eliminate unnecessary data transfer 
–  Improve vectorization and locality 

§  New shared memory mechanism 
–  Designed to quickly transfer pointer-based data structures 

between host and device  
3 



0 

1 

2 

3 

4 

5 

6 

7 
bl

ac
ks

ch
ol

es
 

st
re

am
cl

us
te

r 

fe
rr

et
 

de
du

p 

fre
qm

in
e 

km
ea

ns
 

C
G

 

cf
d nn

 

sr
ad

 

bf
s 

ho
ts

po
t 

av
er

ag
e 

CPU Xeon Phi w/o COMP Xeon Phi w/ COMP 

Evaluation 

4 

Our optimizations benefit 9 out of 12 benchmarks. 
(1.16x ~ 52.21x speedups) 
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