
CAMEO
A CACHE-LIKE MEMORY ORGANIZATION

FOR 3D MEMORY SYSTEMS

Chiachen Chou, Georgia Tech, cc.chou@ece.gatech.edu
Aamer Jaleel, Intel, aamer.jaleel@intel.com

Moinuddin K. Qureshi, Georgia Tech, moin@ece.gatech.edu

ARCHITECTING 3D MEMORY SYSTEMS

2	

Courtesy: JEDEC, Intel, Micron

Stacked
DRAM

Bandwidth 2-8X
Latency 0.5-1X

3D-memory can overcome the bandwidth wall

High Bandwidth Memory

Hybrid Memory Cube

ARCHITECTING 3D MEMORY SYSTEMS

3	

Courtesy: JEDEC, Intel, Micron

Capacity 0.25X

Few GB

Stacked
DRAM

Bandwidth 2-8X
Latency 0.5-1X

ARCHITECTING 3D MEMORY SYSTEMS

4	

Courtesy: JEDEC, Intel, Micron

Stacked
DRAM

Commodity
DRAM

Hybrid Memory System

ARCHITECTING 3D MEMORY SYSTEMS

5	

Courtesy: JEDEC, Intel, Micron

Stacked
DRAM

Commodity
DRAM

Hybrid Memory System

How to use Stacked DRAM: Cache or Memory?

CAMEO FOR HYBRID MEMORY

6

Stacked
DRAM

Off-chip
DRAM

Memory System

Line

HW

Cache

Line

Line

TLM

Page

Page

OS

CAMEO

Line

HW

Line

Line

6

Cache TLM CAMEO
Need OS Support No Yes No

Data Transfer @ 64B 4KB 64B

Memory Capacity No 3D += 3D += 3D
Speedup 50% 50% 78%

TLM

Page

Page

OS

CAMEO

Line

HW

Line

Line

OS-Visible
Memory Space

7

Stacked
DRAM

Off-chip
DRAM

Memory System

Line

HW

Cache

Line

Line

TLM

Page

Page

OS

CAMEO

Line

HW

Line

Line

7

Cache TLM CAMEO
Need OS Support No Yes No

Data Transfer @ 64B 4KB 64B

Memory Capacity No 3D Plus 3D += 3D
Speedup 50% 50% 78%

TLM

Page

Page

OS

CAMEO

Line

HW

Line

Line

CAMEO FOR HYBRID MEMORY

Stacked
DRAM

Off-chip
DRAM

Memory System

Line

HW

Cache

Line

Line

TLM

Page

Page

OS

CAMEO

Line

HW

Line

Line

TLM

Page

Page

OS

CAMEO

Line

HW

Line

Line

8 8

Cache TLM CAMEO
Need OS Support No Yes No

Data Transfer @ 64B 4KB 64B

Memory Capacity No 3D Plus 3D Plus 3D
Speedup 50% 50% 78%

CAMEO FOR HYBRID MEMORY

next	
 paper	

Jaewoong Sim1 Alaa R. Alameldeen2 Zeshan Chishti2

Chris Wilkerson2 Hyesoon Kim1

1Georgia Institute of Technology 2Intel Labs

Jaewoong Sim1 Alaa R. Alameldeen2 Zeshan Chishti2

Chris Wilkerson2 Hyesoon Kim1

1Georgia Institute of Technology 2Intel Labs

MEMORYDRAM$

Jaewoong Sim1 Alaa R. Alameldeen2 Zeshan Chishti2

Chris Wilkerson2 Hyesoon Kim1

1Georgia Institute of Technology 2Intel Labs

Not DRAM$ 

Now, Part of Memory!!

FAST SLOW

Jaewoong Sim1 Alaa R. Alameldeen2 Zeshan Chishti2

Chris Wilkerson2 Hyesoon Kim1

1Georgia Institute of Technology 2Intel Labs

Not DRAM$ 

Now, Part of Memory!!

FAST SLOW

1. Data Migration

2. Memory Integrity

Goal: Enable Hardware-Managed PoM!

Why Hardware?

0%

20%

40%

60%

80%

100%

AVG.

L
L

C
 M

is
s
e
s

S

e
rv

ic
e
d

 f
ro

m

F
a
s
t

M
e
m

o
ry

OS-Managed
Hardware-Managed

Why Hardware?

0%

20%

40%

60%

80%

100%

AVG.

L
L

C
 M

is
s
e
s

S

e
rv

ic
e
d

 f
ro

m

F
a
s
t

M
e
m

o
ry

OS-Managed
Hardware-Managed

+40%

Adapt & Remap data

at a fine granularity!

What Challenges?

Size & Latency

Remapping Table

Memory Utilization Tracking Structure

Metadata for GBs of

Memory!

R
-C

a
c

h
e

Processor DieC C

C C

C C

C C

REQ

Remapping

Table

RC Miss

SLOW

FAST

A C

Y

Y A C

Counter + +-

Session 1A:

Stacked DRAM

Today at

13:25PM!!

Competing Counter

Two-Level Indirection

next	
 paper	

Unison Cache: A Scalable and Effective
Die-Stacked DRAM Cache

Djordje Jevdjic Gabriel H. Loh
Cansu Kaynak Babak Falsafi

TODAY @2:15pm, Session 1A

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

Memory
Core

Core

Core

Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

Memory

Tens to hundreds of
cores & accelerators!

Server Trends

4	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Tens to hundreds of
cores & accelerators!

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

5	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Tens to hundreds of
cores & accelerators!

MemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

6	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Tens to hundreds of
cores & accelerators!

MemoryMemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

7	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Tens to hundreds of
cores & accelerators!

MemoryMemoryMemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

8	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

Many DIMMs per channel
Capacity/BW tradeoff

In-memory big data! 100s of GBs

Tens to hundreds of
cores & accelerators!

MemoryMemoryMemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

9	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Tens to hundreds of
cores & accelerators!

Many DIMMs per channel
Capacity/BW tradeoff

MemoryMemoryMemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

10	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Tens to hundreds of
cores & accelerators!

Many DIMMs per channel
Capacity/BW tradeoff

MemoryMemoryMemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

11	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Tens to hundreds of
cores & accelerators!

Many DIMMs per channel
Capacity/BW tradeoff

MemoryMemoryMemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

12	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Tens to hundreds of
cores & accelerators!

Many DIMMs per channel
Capacity/BW tradeoff

MemoryMemoryMemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

13	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Both consume
 bandwidth!

Tens to hundreds of
cores & accelerators!

Many DIMMs per channel
Capacity/BW tradeoff

MemoryMemoryMemoryCore Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Server Trends

14	

Memory

Servers	
 Drive	
 Into	
 Bandwidth	
 Wall	

In-memory big data! 100s of GBs

Both consume
 bandwidth!

Corne
r!	

Tens to hundreds of
cores & accelerators!

Many DIMMs per channel
Capacity/BW tradeoff

Die-Stacked DRAM Caches

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

LOGIC CPU
Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Core Core Core Core
Core Core Core Core

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

Big data on-chip?

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

Big data on-chip?

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

CACHE

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

CACHE

Memory

Die-Stacked DRAM Caches

DRAM

CACHE

Memory

CPU

Die-Stacked DRAM Caches

DRAM

CACHE

Memory

CPU

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

Tags

CACHE

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM

Tags

CACHE

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM
DRAM

Tags

CACHE

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM
DRAM
DRAM
DRAM

Tags

CACHE

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM DRAM
DRAM
DRAM
DRAM
DRAM

Tags

CACHE

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM DRAM
DRAM
DRAM
DRAM
DRAM

Cache	
 size	

Ta
g	

la
te
nc
y	

CACHE

Tags

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM DRAM
DRAM
DRAM
DRAM
DRAM

Tags

Cache	
 size	

Ta
g	

la
te
nc
y	

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM DRAM
DRAM
DRAM
DRAM
DRAM

How to move tags to DRAM?

Cache	
 size	

Ta
g	

la
te
nc
y	

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM DRAM
DRAM
DRAM
DRAM
DRAM

How to move tags to DRAM?
And improve performance?!

Cache	
 size	

Ta
g	

la
te
nc
y	

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM DRAM
DRAM
DRAM
DRAM
DRAM

How to move tags to DRAM?
And improve performance?!

What is so special about servers?

Cache	
 size	

Ta
g	

la
te
nc
y	

Die-Stacked DRAM Caches

DRAM

LOGIC CPU

DRAM DRAM
DRAM
DRAM
DRAM
DRAM

How to move tags to DRAM?
And improve performance?!

What is so special about servers?

Today	
 at	
 2:15pm	

Session	
 1A	

Umney	
 Theatre	

Die-Stacked DRAM Caches

next	
 paper	

Bi-Modal DRAM Cache: Improving Hit Rate,

Hit Latency and Bandwidth

Nagendra Gulur*

Collaborators: Mahesh Mehendale*,

R Manikantan§ and R Govindarajan+
*Texas Instruments, Bangalore
§ Intel Corporation, Bangalore

+Indian Institute of Science, Bangalore

Picture courtesy Bryan Black Problems with Stacked

DRAM Caches

1. Large Tag Store

2. High Hit Latency

3. Wasted Off-Chip Bandwidth

•Expensive

•Fast Access

•Mitigation:

• Larger Blocks?

High Wasted

Bandwidth

SRAM DRAM

Large Metadata

Our Proposal

Metadata : In DRAM

Block Size : Two Sizes (64B and 512B)

Tag Access : As good as SRAM

•Slow Access

•Scales for very large

cache sizes

•Mitigation:

•Tags and Data in

same rows?

•Give up Associativity?

Tag Bank

Data Banks

Bi-Modal Cache Organization

Some

Big Blocks

Some Small

Blocks

Way Locator

Block Size

Prediction

SRAM DRAM

BIG

SMALL

Benefits and Results

Hit

Rate

Hit

Latency

Wasted
Bandwidth

Tag

Data

Parallel Tag + Data

Performance Improves by

10-14% in 4, 8 and 16-

core workloads.

SRAM Overhead ~140KB

next	
 paper	

Citadel: Efficiently Protecting
Stacked Memory From Large

Granularity Failures

Dec 15th 2014

Prashant Nair - Georgia Tech
David Roberts - AMD Research

Moinuddin Qureshi - Georgia Tech

Susceptible to new failure modes: TSV faults
Causes large granularity failures (e.g. Faulty Bank)
Striping data across banks è high overheads

2	

3D DRAM: TSV & LARGE FAULTS

2	
 Courtesy MICRON, Extremetech

3D DRAM: Overcomes memory bandwidth wall

Susceptible to new failure modes: TSV faults
Causes large granularity failures (e.g. Faulty Bank)
Striping data across banks è high overheads

3	

3D DRAM: TSV & LARGE FAULTS

3	
 Courtesy MICRON, Extremetech

Goal: Tolerate TSV faults & Large faults at low cost

3D DRAM: Overcomes memory bandwidth wall

CITADEL FOR 3D DRAM

4	

•  Citadel protects against TSV and Large Faults,
while retaining line in the same bank

CITADEL FOR 3D DRAM

•  Citadel protects against TSV and Large Faults,
while retaining line in the same bank

•  Citadel employs a three-pronged approach

CITADEL FOR 3D DRAM

6	

•  Citadel protects against TSV and Large Faults,
while retaining line in the same bank

•  Citadel employs a three-pronged approach

DRAM
Dies

ECC Die

Dynamic TSV SWAP 1	

CITADEL FOR 3D DRAM

7	

•  Citadel protects against TSV and Large Faults,
while retaining line in the same bank

•  Citadel employs a three-pronged approach

DRAM
Dies

ECC Die

Dynamic TSV SWAP 1	

Tri Dimensional Parity 2	

CITADEL FOR 3D DRAM

8	

•  Citadel protects against TSV and Large Faults,
while retaining line in the same bank

•  Citadel employs a three-pronged approach

DRAM
Dies

ECC Die

Dynamic TSV SWAP 1	

Tri Dimensional Parity 2	

Dual Granularity Sparing 3	

CITADEL FOR 3D DRAM

9	

•  Citadel protects against TSV and Large Faults,
while retaining line in the same bank

•  Citadel employs a three-pronged approach

DRAM
Dies

ECC Die

Dynamic TSV SWAP 1	

Tri Dimensional Parity 2	

Dual Granularity Sparing 3	

Citadel has negligible overheads and still provides
700x higher resilience than the best ECC schemes

next	
 paper	

Locality-Aware Mapping of
Nested Parallel Patterns on GPUs

HyoukJoong Lee*, Kevin Brown*, Arvind Sujeeth*,

Tiark Rompf†‡, Kunle Olukotun*

*Pervasive Parallelism Laboratory, Stanford University
†Purdue University, ‡Oracle Labs

 High-level languages for GPUs

 Provide higher productivity and portable performance

 Using parallel patterns (e.g., map, reduce, groupby) is becoming popular

Nested Parallel Patterns and
Mapping Strategies

 High-level languages for GPUs

 Provide higher productivity and portable performance

 Using parallel patterns (e.g., map, reduce, groupby) is becoming popular

 Parallel patterns are often nested, but difficult to map on GPUs

 Many factors to consider together (e.g., coalescing, divergence, dynamic allocations)

 Large space of possible mappings

 Compilers often support only a fixed mapping strategy, but not always efficient

Nested Parallel Patterns and
Mapping Strategies

 High-level languages for GPUs

 Provide higher productivity and portable performance

 Using parallel patterns (e.g., map, reduce, groupby) is becoming popular

 Parallel patterns are often nested, but difficult to map on GPUs

 Many factors to consider together (e.g., coalescing, divergence, dynamic allocations)

 Large space of possible mappings

 Compilers often support only a fixed mapping strategy, but not always efficient

// Pagerank algorithm
Nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}
sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

}

Nested Parallel Patterns and
Mapping Strategies

 High-level languages for GPUs

 Provide higher productivity and portable performance

 Using parallel patterns (e.g., map, reduce, groupby) is becoming popular

 Parallel patterns are often nested, but difficult to map on GPUs

 Many factors to consider together (e.g., coalescing, divergence, dynamic allocations)

 Large space of possible mappings

 Compilers often support only a fixed mapping strategy, but not always efficient

// Pagerank algorithm
Nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}
sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

}

Nested Parallel Patterns and
Mapping Strategies

thread-blocks

threads in a block

 High-level languages for GPUs

 Provide higher productivity and portable performance

 Using parallel patterns (e.g., map, reduce, groupby) is becoming popular

 Parallel patterns are often nested, but difficult to map on GPUs

 Many factors to consider together (e.g., coalescing, divergence, dynamic allocations)

 Large space of possible mappings

 Compilers often support only a fixed mapping strategy, but not always efficient

// Pagerank algorithm
Nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}
sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

}

Nested Parallel Patterns and
Mapping Strategies

warps

threads in a warp

 High-level languages for GPUs

 Provide higher productivity and portable performance

 Using parallel patterns (e.g., map, reduce, groupby) is becoming popular

 Parallel patterns are often nested, but difficult to map on GPUs

 Many factors to consider together (e.g., coalescing, divergence, dynamic allocations)

 Large space of possible mappings

 Compilers often support only a fixed mapping strategy, but not always efficient

// Pagerank algorithm
Nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}
sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

}

Nested Parallel Patterns and
Mapping Strategies

threads

serialize

Compiler Framework for
Multi-Dimensional Mapping

Logical Dimension: x, y, z, ..
Block Size: N
Degree of Parallelism (DOP): Span(n), Split(k)

 Define Mapping Parameters

Compiler Framework for
Multi-Dimensional Mapping

Logical Dimension: x, y, z, ..
Block Size: N
Degree of Parallelism (DOP): Span(n), Split(k)

Pattern (I) Dim(y), Size(16), Span(1)
Pattern (J) Dim(x), Size(32), Span(all)

Equivalent Parameters for Warp-Based Mapping

 Define Mapping Parameters

Compiler Framework for
Multi-Dimensional Mapping

Code
Generation

Logical Dimension: x, y, z, ..
Block Size: N
Degree of Parallelism (DOP): Span(n), Split(k)

IR Traversal &
Generate

Constraints

Search for an
Efficient Mapping
(Score Calculation,

DOP Control)

Compiler
Front-end

Application

Pattern (I) Dim(y), Size(16), Span(1)
Pattern (J) Dim(x), Size(32), Span(all)

Equivalent Parameters for Warp-Based Mapping

Mapping Constraints
(e.g., Dim(x) for coalescing)

Memory Optimization
(layout, shared mem)

A Set of Templates
for Each Pattern

Selected
Mapping

IR IR with
Constraints

 Compiler Overview

 Define Mapping Parameters

Performance Results

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Nearest
Neighbor

Gaussian
Elimination

BFS Hotspot Mandelbrot Srad Pathfinder LUDN
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Manual MultiDim 1-D
15.7 40.1 25.4 19.1 60.8

 Rodinia benchmark suite

 28.6x speedup over 1D mappings

 9.6x speedup over existing 2D mappings

 24% slower than manually optimized CUDA code (7 out of 8)

 Today 1:25 PM (Session 1B, Room: Main Auditorium)

next	
 paper	

Cornell University Ji Kim 1/20 Cornell University Ji Kim 1/20 Cornell University Ji Kim

Cornell University

IEEE/ACM International Symposium
on Microarchitecture 2014

(MICRO-47)

Ji Kim and Christopher Batten

Accelerating Irregular Algorithms
on GPGPUs Using Fine-Grain

Hardware Worklists

Cornell University Ji Kim 2/20 Cornell University Ji Kim 2/20 Cornell University Ji Kim

Amorphous Data Parallelism
Breadth-First Search

Delaunay Mesh
Refinement

Survey Propagation

Barnes-Hut N-Body

Minimum Spanning
Tree

Single-Source
Shortest-Path

Cornell University Ji Kim 3/20 Cornell University Ji Kim 3/20 Cornell University Ji Kim

Amorphous Data Parallelism
Breadth-First Search

Delaunay Mesh
Refinement

Survey Propagation

Barnes-Hut N-Body

Minimum Spanning
Tree

Single-Source
Shortest-Path

Cornell University Ji Kim 4/20 Cornell University Ji Kim 4/20 Cornell University Ji Kim

Amorphous Data Parallelism
Breadth-First Search

Delaunay Mesh
Refinement

Survey Propagation

Barnes-Hut N-Body

Minimum Spanning
Tree

Single-Source
Shortest-Path

Cornell University Ji Kim 5/20 Cornell University Ji Kim 5/20 Cornell University Ji Kim

Amorphous Data Parallelism
Breadth-First Search

Delaunay Mesh
Refinement

Survey Propagation

Barnes-Hut N-Body

Minimum Spanning
Tree

Single-Source
Shortest-Path

Cornell University Ji Kim 6/20 Cornell University Ji Kim 6/20 Cornell University Ji Kim

Amorphous Data Parallelism
Breadth-First Search

Delaunay Mesh
Refinement

Survey Propagation

Barnes-Hut N-Body

Minimum Spanning
Tree

Single-Source
Shortest-Path Experiments on NVIDIA

Tesla C2075 GPU using
LonestarGPU

benchmark suite

Cornell University Ji Kim 7/20 Cornell University Ji Kim 7/20 Cornell University Ji Kim

Existing SW Approaches
• Memory contention

• Suboptimal load balancing

• SW overhead

Fine-Grain
Hardware Worklist

Cornell University Ji Kim 8/20 Cornell University Ji Kim 8/20 Cornell University Ji Kim

Existing SW Approaches
• Memory contention

• Suboptimal load balancing

• SW overhead

Fine-Grain
Hardware Worklist

• HWWL distributed banks

• HWWL distributed banks

Cornell University Ji Kim 9/20 Cornell University Ji Kim 9/20 Cornell University Ji Kim

Existing SW Approaches
• Memory contention

• Suboptimal load balancing

• SW overhead

Fine-Grain
Hardware Worklist

• HWWL distributed banks

• HWWL distributed banks

• HWWL work redistribution

Cornell University Ji Kim 10/20 Cornell University Ji Kim 10/20 Cornell University Ji Kim

Existing SW Approaches
• Memory contention

• Suboptimal load balancing

• SW overhead

Fine-Grain
Hardware Worklist

• HWWL distributed banks

• HWWL distributed banks

• HWWL work redistribution

• Seamless work spilling to
and refilling from memory

Cornell University Ji Kim 11/20 Cornell University Ji Kim 11/20 Cornell University Ji Kim

Performance Results

1.2—2.4X speedup over highly optimized SW
implementation of challenging, irregular applications

BFS BH DMR MST SP SSSP
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Sp
ee
du
p

topo data hwwl

next	
 paper	

PORPLE: An Extensible Optimizer for

Portable Data Placement on GPU

North Carolina State University

Guoyang Chen

Xipeng Shen

Bo Wu Dong Li

Colorado School of Mines Oak Ridge National Lab

Data Placement Problem on GPU

2

Global memory

Texture memory

Shared memory

Constant memory

(L1/L2 cache)

(Read-only cache)

(Texture cache)

A

B

C

D
…

Data in a program

?

?

?

?
?

3X performance difference

3

PLACER

(placing engine)

MSL

(mem. spec. lang.)

PORPLE-C

(compiler)

architect/user
mem

spec

org. program

access

patterns

staged

program

online profile

desired

placement

Efficient

Execution

Offline Online

microkernels

input

PORPLE:

Portable Data Placement Engine

Goal: To determine the best data placement strategy

 cross different architectures and inputs during

 run-time.

spmv particlefilter

Portability and Input-adaptive
• Cross architectures

• Cross inputs

4

next	
 paper	

Yunsup Lee – UC Berkeley

Yunsup Lee – UC Berkeley

Executive Summary
28 Benchmarks written in CUDA
(Parboil, Rodinia, FFT, nqueens)

CUDA 6.5
Production Compiler

Divergence Stack

CUDA Binary

Modified CUDA 6.5
Production Compiler
Full Predication with

New Compiler Algorithms

CUDA Binary

Performance, Statistics

NVIDIA
Tesla K20c
(Kepler, GK110)

Performance, Statistics

Performance with
predication is on par
compared to
performance with
divergence stack.

The compiler should
manage divergence, not
the hardware.

Yunsup Lee – UC Berkeley

Yunsup Lee – UC Berkeley

GPUs do not need
a divergence stack!

next	
 paper	

Managing GPU Concurrency in

Heterogeneous Architectures

Shared Resources

Network

LLC

Memory

Managing GPU Concurrency in

Heterogeneous Architectures

Shared Resources

Network

LLC

Memory

Managing GPU Concurrency in

Heterogeneous Architectures

Shared Resources

Network

LLC

Memory

Managing GPU Concurrency in

Heterogeneous Architectures

Shared Resources

Network

LLC

Memory

Our Proposal

Warp Scheduler

Controls GPU Thread-Level Parallelism

Our Proposal

Warp Scheduler

Controls GPU Thread-Level Parallelism

CPU-centric

Strategy

Improved GPU

performance

Improved CPU

performance

× 

Our Proposal

Warp Scheduler

Controls GPU Thread-Level Parallelism

CPU-centric

Strategy

CPU-GPU

Balanced

Strategy

Improved GPU

performance

Improved CPU

performance

× 

 

Our Proposal

Warp Scheduler

Controls GPU Thread-Level Parallelism

CPU-centric

Strategy

CPU-GPU

Balanced

Strategy

Improved GPU

performance

Improved CPU

performance

× 

 

Control the trade-off

Our Proposal

CPU-centric Strategy

Memory Congestion

CPU Performance

Our Proposal

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

GPU TLP

Our Proposal

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

GPU TLP

Results Summary:

+24% CPU & -11% GPU

Our Proposal

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

GPU TLP

Results Summary:

+24% CPU & -11% GPU

CPU-GPU Balanced

Strategy

GPU TLP

GPU Latency Tolerance

Our Proposal

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

GPU TLP

Results Summary:

+24% CPU & -11% GPU

CPU-GPU Balanced

Strategy

GPU TLP

GPU Latency Tolerance

IF Latency Tolerance

GPU TLP

Our Proposal

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

GPU TLP

Results Summary:

+24% CPU & -11% GPU

CPU-GPU Balanced

Strategy

GPU TLP

GPU Latency Tolerance

IF Latency Tolerance

GPU TLP

Results Summary:

+7% both CPU & GPU

Managing GPU Concurrency in

Heterogeneous Architectures

Onur Kayıran1,

Nachiappan CN1, Adwait Jog1, Rachata Ausavarungnirun2,

Mahmut T. Kandemir1, Gabriel H. Loh3, Onur Mutlu2, Chita R. Das1

1 Penn State
2 Carnegie Mellon

3 AMD Research

Managing GPU Concurrency in

Heterogeneous Architectures

Onur Kayıran1,

Nachiappan CN1, Adwait Jog1, Rachata Ausavarungnirun2,

Mahmut T. Kandemir1, Gabriel H. Loh3, Onur Mutlu2, Chita R. Das1

Today

Session 1B – Main Auditorium

@ 3 pm

1 Penn State
2 Carnegie Mellon

3 AMD Research

next	
 paper	

1

1

1

1

2

2

2

2

“…Anyone in the world can write anything they want
about any subject. So you know you are getting the best
possible information.” – Michael Scott, Dunder Mifflin

“Wikipedia is the best thing ever…”

2

“…Anyone in the world can write anything they want
about any subject. So you know you are getting the best
possible information.” – Michael Scott, Dunder Mifflin

“Wikipedia is the best thing ever…”

Joshua San Miguel
Mario Badr

Natalie Enright Jerger

3:55pm, Session 2A, Main Auditorium

“Load Value Approximation is the best thing ever”

3

next	
 paper	

Jeffrey R. Diamond, Donald S. Fussell
(University of Texas at Austin)

Stephen W. Keckler (NVIDIA Corporation)

Arbitrary Modulus Indexing

 1

2,380&

0&

100&

200&

300&

400&

500&

600&

lu&& hwt&& needle&& srad&& backprop&&

Re
pl
ay
s(P

er
(Th

ou
sa
nd

(W
ar
p(
In
str

uc
5o

ns
(

Power-of-2 (PO2) Indexing Leads To Conflicts

Arbitrary Modulus Indexing (AMI)

 2

32#bit'address'='ABCD256'x'
'''''''''''''{DIV'255,'MOD'255}'ABC.D

 AB.CD
 A.BCD
 .ABCD
 .0ABCD

DIV.RRRRR…

AAA.A…
 BB.B…
 C.C…
 .D…
DIV.R…



0.1255

1980s: Extensive NPO2 Indexing Research
 - Few moduli implemented efficiently

AMI can implement ANY moduli efficiently

 - Found robust, novel moduli

AMI Eliminates Bank Conflicts

 3

328$

0$

5$

10$

15$

20$

25$

30$

35$

40$

45$

50$

lu$$ hwt$$ needle$$ srad$$ backprop$$

Ba
nk

%C
on

fli
ct
s%P

er
%T
ho

us
an

d%
W
ar
ps
%

32/32$

62/48$

AMI Improves Power And Performance

 4

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

lu## hwt## needle## srad## backprop##

Fr
ac
%
on

(o
f(I
ns
tr
uc
%
on

s(
Is
su
ed

(

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

lu#
#

hw
t##

ne
ed
le#
#

sra
d##

ba
ckp
rop
##

GE
OM

EA
N#

Sp
ee
d%
U
p%

+1#SP#bank#

+L1#Lines#

62#SP,#48#L1#

IDEAL#

next	
 paper	

Why Another Memory Control Scheme?

Why Another Memory Control Scheme?

FR-FCFS [ISCA’00]

Why Another Memory Control Scheme?

PAR-BS [ISCA’08]
STFM [MICRO’07]STFM [MICRO 07]

FR-FCFS [ISCA’00]

Why Another Memory Control Scheme?

TCM [MICRO’10]

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

STFM [MICRO 07]

FR-FCFS [ISCA’00]

Why Another Memory Control Scheme?

BLISS [ICCD’14]
…

SMS [ISCA’12]
TCM [MICRO’10]

BLISS [ICCD’14]

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

STFM [MICRO 07]

FR-FCFS [ISCA’00]

Why Another Memory Control Scheme?
Reads Writes

BLISS [ICCD’14]
…

SMS [ISCA’12]
TCM [MICRO’10]

BLISS [ICCD’14]

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

STFM [MICRO 07]

FR-FCFS [ISCA’00]

Why Another Memory Control Scheme?
Reads Writes

BLISS [ICCD’14]
…

SMS [ISCA’12]
TCM [MICRO’10]

BLISS [ICCD’14]

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

STFM [MICRO 07]

FR-FCFS [ISCA’00]

Why Another Memory Control Scheme?
Reads Writes

BLISS [ICCD’14]
…

SMS [ISCA’12]
TCM [MICRO’10]

BLISS [ICCD’14] Fast Load/Store
(Memory Attribute)

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

STFM [MICRO 07]

FR-FCFS [ISCA’00]

Why Another Memory Control Scheme?
Reads Writes

BLISS [ICCD’14]
…

SMS [ISCA’12]
TCM [MICRO’10]

BLISS [ICCD’14] Fast Load/Store
(Memory Attribute)

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

Data PersistenceSTFM [MICRO 07]

FR-FCFS [ISCA’00]
(Storage Attribute)

Why Another Memory Control Scheme?
Reads Writes

BLISS [ICCD’14]
…

SMS [ISCA’12]
TCM [MICRO’10]

BLISS [ICCD’14] Fast Load/Store
(Memory Attribute)

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

Data PersistenceSTFM [MICRO 07]

FR-FCFS [ISCA’00]
(Storage Attribute)

Why Another Memory Control Scheme?
Reads Writes

BLISS [ICCD’14]
…

SMS [ISCA’12]
TCM [MICRO’10]

BLISS [ICCD’14] Fast Load/Store
(Memory Attribute)

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

Data PersistenceSTFM [MICRO 07]

FR-FCFS [ISCA’00]
(Storage Attribute)

Our Design: Towards A FIRM Tree
Reads Writes
…

BLISS [ICCD’14]

SMS [ISCA’12]
TCM [MICRO’10] FIRM [MICRO’14]

BLISS [ICCD 14]

PAR-BS [ISCA’08]
STFM [MICRO’07]

ATLAS [HPCA’10]

STFM [MICRO 07]

FR-FCFS [ISCA’00]

Fairness PerformanceFairness Performance

vs. the best of
5 previous scheduler designs

Details about “FIRM”
Fair and High‐Performance
Memory Control for
Persistent Memory Systems

Jishen Zhao
Onur Mutlu
Yuan Xie

HP Labs/Penn State/CMU
CMU
UCSB/Penn State/AMD Research

Presentation: Mon (Dec.15) 3:30 PM
Session 2A
(Room: Dining Hall)

Poster Session: Tue (Dec. 16) 12:00 PM

next	
 paper	

Short-Circuiting Memory Traffic

in Handheld Platforms
Praveen Yedlapalli, Nachi Chidambaram. N., *Niranjan Soundararajan,

Anand Sivasubramaniam, Mahmut Kandemir, Chita R. Das

The Pennsylvania State University *Intel Corp.

DRAM

Imaging

DSP

60-80%

stalls !

DRAM

Imaging

DSP

Short-Circuiting Memory Traffic

in Handheld Platforms
Praveen Yedlapalli, Nachi Chidambaram. N., *Niranjan Soundararajan,

Anand Sivasubramaniam, Mahmut Kandemir, Chita R. Das

The Pennsylvania State University *Intel Corp.

“Sub-Frame”

Imaging

DSP

Imaging

DSP

buffers

Imaging

DSP

Memory

Queues

forwarding

Buffer

33 % Reduced DRAM energy

35+% Reduced active cycles for IP

45 % Reduced Cycles Per Frame

~15% Increase in FPS

Talk on Dec-15th - 15:55 - 18:00 Session 2A

See you all at the poster session!

next	
 paper	

Efficient Memory Virtualization
Reducing Dimensionality of Nested Page Walks

TLB misses are very costly in virtual servers.

—Buell, et al. VMware Technical Journal 2013

Jayneel Gandhi, Arkaprava Basu,
Mark D. Hill, Michael M. Swift

1

Cost

2

3.6x increase in

overheads

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%
4

K

4
K

+4
K

4
K

+2
M

4
K

+1
G

memcached

Ex
e

cu
ti

o
n

 T
im

e
 O

ve
rh

e
ad

Native Virtual

Cost

2

3.6x increase in

overheads

1

2

Up to 24 memory

accesses

2D

hPA

gVA

cr3

gPA

cr3

Problem

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%
4

K

4
K

+4
K

4
K

+2
M

4
K

+1
G

memcached

Ex
e

cu
ti

o
n

 T
im

e
 O

ve
rh

e
ad

Native Virtual

Cost

2

3.6x increase in

overheads

Problem

1

2

Up to 24 memory

accesses

2D

Opportunity

hPA

gVA

cr3

gPA

cr3

Direct

Segments

1D0D

PA

cr3

VA

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%
4

K

4
K

+4
K

4
K

+2
M

4
K

+1
G

memcached

Ex
e

cu
ti

o
n

 T
im

e
 O

ve
rh

e
ad

Native Virtual

Solution: Three Modes Extending Direct Segments

3

cr3

gVA

cr3

hPA

gPA

VMM Direct

2D1D

3

Solution: Three Modes Extending Direct Segments

cr3

gVA

cr3

hPA

gPA

VMM Direct

2D1D

Dual Direct

2D0D

hPA

cr3

cr3

gPA

gVA

3

Solution: Three Modes Extending Direct Segments

cr3

gVA

cr3

hPA

gPA

VMM Direct

2D1D

cr3

gVA

gPA

cr3

hPA

Guest Direct

2D1D

Dual Direct

2D0D

hPA

cr3

cr3

gPA

gVA

3

Solution: Three Modes Extending Direct Segments

cr3

gVA

cr3

hPA

gPA

VMM Direct

2D1D

cr3

gVA

gPA

cr3

hPA

Guest Direct

2D1D

hPA

cr3

cr3

gPA

gVA

Dual Direct

2D0D

Minimal

Overheads

~
0

%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

4
K

4
K

+4
K

V
M

M
 D

D
u

al
 D

G
u

es
t

D

memcached

Ex
ec

u
ti

o
n

 T
im

e
O

ve
rh

ea
d

s

Native Virtual Modeled

Escape Filter: Permanent “hard” memory faults

Optimization

4

Escape Filter: Permanent “hard” memory faults

Optimization

4

Please come to our talk

Today, Session: 2A, Main Auditorium

Efficient Memory Virtualization
Reducing Dimensionality of Nested Page Walks

Jayneel Gandhi, Arkaprava Basu,
Mark D. Hill, Michael M. Swift

next	
 paper	

Iso-X: A Flexible Architecture for
Hardware-Managed Isolated Execution

Dmitry Evtyushkin1 Jesse Elwell1 Meltem Ozsoy1

Dmitry Ponomarev1 Nael Abu-Ghazaleh2 Ryan Riley3

1
State University of New York at

Binghamton
Department of Computer Science

The 47th Annual IEEE/ACM International Symposium on
Microarchitecture

December 14th, 2014

2
University of California at Riverside

 Department of Computer Science &
Engineering

3
Qatar University

Department of Computer Science

● Multi-layered TCB
● Large and complex software

Operating System

Hypervisor

Firmware

Hardware

User
App

LibrariesThreat Model

Hostile Software
Environment

● Multi-layered TCB
● Large and complex software

Operating System

Hypervisor

Firmware

Hardware

User
App

LibrariesThreat Model

Hostile Software
Environment

● Multi-layered TCB
● Large and complex software

Operating System

Hypervisor

Firmware

Hardware

User
App

Libraries

● Iso-X offers isolated execution environment
● Software modules can run in full isolation
● Only Hardware in Trusted Computing Base (TCB)

Threat Model

Isolated Compartments

● Compartments reside in
process' address space
– Allows efficient interaction

– Simple compartment booting
process

● All code outside is untrusted
– Used by compartment to

communicate with outside
world

Iso-X Highlights

● Full featured execution environment for isolated
compartments

● Relies only on a few simple data structures
maintained in protected memory

● Attestation mechanism to protect against
emulation

● Hardware explicitly controls every access to
compartment memory

● Low performance impact, only 0.97% on average

next	
 paper	

Random Fill Cache
Architecture

Fangfei Liu and Ruby B. Lee

Princeton University

1

• Defends against challenging cache side-

channel attacks, without impacting

performance

• Unlike past work focused on cache

contention-based attacks, we focus on

“reuse-based attacks” – strikes at heart of

cache’s function!

Motivation

• Reuse of data may leak secret information

…T[x], T[xi], T[x], T[x], T[xj], T[x]…

• No resource contention (conflicting misses)

• Strike at cache’s main purpose – cache hits

‹xi›=‹xj›
cache hit

(collision)

lower

execution time

secret information

• Demand fetch policy is root cause of reuse-
based attacks!!

CPU cache memory

serve CPU④

demand access①

fill cache③

miss/demand request②

Our discoveries and solutions

Serve CPU③

demand access① miss/demand request②

random fill request

fill cache

CPU

cache
memory

• Random fill policy: cache fill is de-correlated
with a demand access

• Demand fetch policy is root cause of reuse-
based attacks!!

CPU cache memory

serve CPU④

demand access①

fill cache③

miss/demand request②

Our discoveries and solutions

Random fill within configurable
neighborhood window

• Still take advantage of spatial locality – No

performance degradation for crypto programs

• Even improves performance of some

streaming programs

AES

Demand

fetch

next	
 paper	

 47th International Symposium on Microarchitecture!

ª Unauthorized exposure of sensitive data!
§  Examples: Identify theft, credit card data breach!

ª Software confinement mechanisms continue to improve!
§  Attackers increasingly turn to hardware-based attacks!

12/14/14 1

CC-Hunter: Uncovering Covert Timing Channels on
Shared Processor Hardware!

Jie Chen and Guru Venkataramani!
Department of Electrical and Computer Engineering  

The George Washington University!
Washington, DC!

Information Leakage!

Today, 3:55 pm, Session 2B: Security, Room: Umney Theatre!

 47th International Symposium on Microarchitecture!

Covert Timing Channel!

12/14/14 2

Trojan Spy

Modulate
timing

Decode
secret

conflict!

Transmitting: 010 …! Decoding: 010 …!

Time!

Trojan’s !
Access!

Spy’s!
Access! S S S S S S S S S S S S S S S S S S S S S S S S S S S!

 T T T T T T T T T T T T T!

conflicts! conflicts!conflicts!conflicts!conflicts! conflicts!conflicts!conflicts!conflicts! conflicts!

 47th International Symposium on Microarchitecture!

Detecting Covert Timing Channels on Hardware!

12/14/14 3

ª We study conflicts on shared hardware resource and the
associated events!

ª We design algorithms that look for patterns of conflicts!
§  On combinational structures!

–  Recurrent Burst Pattern!
§  On memory structures!

–  Oscillation Pattern!

ª Runtime detection capability!
§  Low-cost and efficient hardware-software support!

 47th International Symposium on Microarchitecture!

Results!

12/14/14 4 Today, 3:55 pm, Session 2B: Security, Room: Umney Theatre!

Conflict Patterns !
for Covert Timing Channels!

Conflict Patterns!
for regular benchmark applications!

ª More details in the talk!!

On combinational
structures!

On memory
structures!

next	
 paper	

Continuous, Low Overhead, Run-Time
Validation of Program Executions
The Problem and Existing Solutions
§  An execution is authenticated if its control flow path and the

instructions along that path were as intended: adversaries can exploit
vulnerabilities to alter either of both at run-time or before the run
starts

§  Validating the binaries prior to execution is thus not enough
§  Most existing solutions that check for control flow integrity are

geared towards specific types of attacks (Vtable modification,
ROP, JOP etc.)

§  Need an enduring and universal solution:
•  Can handle all attacks against code and instruction integrity
•  Can handle future attacks that can compromise these

1

ERDEM AKTAS*, FURAT AFRAM+, KANAD GHOSE [EAKTAS, FAFRAM1,GHOSE]@CS.BINGHAMTON.EDU
COMPUTER SCIENCE DEPARTMENT STATE UNIVERSITY OF NEW YORK AT BINGHAMTON

MICRO 2014

Goal and Unique Aspects of this Work
§  Go beyond the current point-in-time solutions for dealing

with specific types of attacks that are known today
§  Validate code integrity and and/or control flow violations at

run-time: as the program executes
§  Provide a more universal and enduring solution,

irrespective of the specific cause of the violations/attacks
§  This solution:
§  Does not require binary modifications
§  Does not require ISA extensions
§  Works with out-of-order processors
§  Is scalable to any binary size
§  Has a low execution overhead

MICRO 2014

2

Approach

3

MICRO 2014

§  Authenticate crypto-hash signature of basic blocks and control flow
path between consecutive basic blocks as program executes

§  Store statically-derived reference information in an encrypted form in
RAM

§  Use a signature cache and overlap authentication and normal pipeline
activity to reduce performance penalty

§  Delay memory updates from a BB till its execution is authenticated

Performance Overhead: Two SC Sizes

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

32KB 64K

IPC(Instruction per Cycle) overhead in % of the benchmarks
(Average of 1.87%)

*REV was evaluated through simulation using the cycle-accurate MARSS full system microarchitectural simulator for X86-64 ISA

MICRO 2014

4

next	
 paper	

SAVAT:
A Practical Methodology

for
Measuring

the Side-Channel
Signal Available to the

Attacker
for

Instruction-Level Events

Rob Callan, Alenka Zajic, Milos Prvulovic

Rob Callan, Alenka Zajic, Milos Prvulovic

Quantifying Side Channel
Vulnerability

Rob Callan, Alenka Zajic, Milos Prvulovic

SAVAT

• Side-Channel Signal Available to
Attackers
–Entire-program

–Circuit-Level

–Instruction-Level
• Useful for both HW and SW

improvements

Rob Callan, Alenka Zajic, Milos Prvulovic 3

Rob Callan, Alenka Zajic, Milos Prvulovic

SAVAT Results 7.9x10-21 joules per instruction

0.81.11.11.11.01.21.39.36.94.65.0DIV

1.10.60.60.60.60.70.75.73.73.94.4MUL

1.10.60.60.60.70.60.77.33.84.04.4SUB

1.00.60.60.70.60.70.77.04.14.14.2ADD

1.00.60.70.60.60.70.76.44.13.84.1NOI

1.20.60.60.60.70.60.74.93.84.24.5STL1

1.30.70.70.70.70.60.75.83.34.24.4LDL1

10.16.26.16.16.16.15.10.70.810.611.5STL2

6.23.84.83.64.33.53.90.80.67.77.7LDL2

4.24.33.93.93.84.24.311.88.82.42.3STM

5.14.24.44.24.34.44.611.47.92.41.8LDM

DIVMULSUBADDNOISTL1LDL1STL2LDL2STMLDM

next	
 paper	

RpStacks:
Fast and Accurate
Processor Design Space Exploration
Using Representative Stall-Event Stacks

Jaewon Lee, Hanhwi Jang, and Jangwoo Kim

POSTECH

Slow and expensive

Slow and expensive

…

Slow and expensive

Slow

Expensive
…

Deadline

Simultaneous representative-path analysis

Instruction

Pi
pe

lin
e

div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …,
beq, R7, R0, Ntaken, Timing: …,
add, R6, R1, Timing: 1, 5, 6, 6, …
…

Simulation
Information
(Baseline)

Dependency & Stall cycles

Simultaneous representative-path analysis
div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …,
beq, R7, R0, Ntaken, Timing: …,
add, R6, R1, Timing: 1, 5, 6, 6, …
…

Cycles: 100 Cycles: 80

Simultaneous representative-path analysis
div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …,
beq, R7, R0, Ntaken, Timing: …,
add, R6, R1, Timing: 1, 5, 6, 6, …
…

Cycles: 90 Cycles: 110

Simultaneous representative-path analysis
div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …,
beq, R7, R0, Ntaken, Timing: …,
add, R6, R1, Timing: 1, 5, 6, 6, …
…

RpStacks

Event1 Event2 Event3

Simultaneous representative-path analysis
div, R2, R3, Timing: 1, 5, 6, 7,…
sub, R1, R0, Timing: 1, 6, 7, 7,…
ld, R5, 0x02, L1Miss, Timing: …,
beq, R7, R0, Ntaken, Timing: …,
add, R6, R1, Timing: 1, 5, 6, 6, …
…

RpStacks

Event1 Event2 Event3

Fast and accurate
 Fast

x26 speedup vs. simulator
(1,000 design point testing)

 Accurate
vs. traditional simulation result analysis

Main auditorium
16th / 9:15 AM

next	
 paper	

GPUMech: GPU Performance Modeling
Technique based on Interval Analysis

Jen-Cheng Huang, Joo Hwan Lee, Hyesoon Kim, Hsien-Hsin S. Lee

GPU Kernel

GPUMech

Hardware
configurations

CPI
Stall

Cycles
Queuing

Delay
TLP

Georgia	
 Ins,tute	
 of	
 Technology	

Can we quickly find bottlenecks of hardware configurations
without time-consuming detailed timing simulation?

Pe
rf

or
m

an
ce

Resource
contention

Register file size

#1
#2

#N

Warp ID

Warp Profiling

Time

GPU Kernel

Functional
Simulation

#1
#2

#N

Warp ID

Warp Profiling

Time

Warp Selection

GPU Kernel

Functional
Simulation

Multithreading

#1
#2

#N

Warp ID

Warp Profiling

Time

Warp Selection

GPU Kernel

Functional
Simulation

Stall
Cycles Model

Multithreading

#1
#2

#N

Warp ID

Warp Profiling

Time

Warp Selection

Resource Contention

Queuing
Delay

GPU Kernel

Functional
Simulation

Stall
Cycles Model

Multithreading

#1
#2

#N

Warp ID

Warp Profiling

Time

Warp Selection

Resource Contention

Queuing
Delay

GPU Kernel

Functional
Simulation

Stall
Cycles

HW Confs

CPI
Stall

Cycles
Queuing

Delay
TLP

Bottleneck Visualization

Model

Approach: GPUMech
•  Use analytical modeling to model performance

•  Use functional simulation to identify stall events

•  Visualize performance bottlenecks using CPI stack

•  97x Speed Up over detailed timing simulation

 (Error: 13.2%)

Session 3A: Methodology, Modeling and Tools
Tue 09:15 – 10:30

next	
 paper	

Cornell	
 University	

Computer	
 Systems	
 Laboratory	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Derek	
 Lockhart,	
 Gary	
 Zibrat,	
 and	
 Christopher	
 Ba>en	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

InstrucFon	
 Set	
 Architecture	

Algorithms	

Compilers	
 Cycle	
 Level	

•  Behavior	

•  Timing	

Microarchitecture	

VLSI	

Sea	
 of	
 Transistors	

ApplicaFons	

1	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

InstrucFon	
 Set	
 Architecture	

Algorithms	

Compilers	
 Cycle	
 Level	

•  Behavior	

•  Timing	

Microarchitecture	

VLSI	

Sea	
 of	
 Transistors	

ApplicaFons	

1	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

InstrucFon	
 Set	
 Architecture	

Algorithms	

Compilers	
 Cycle	
 Level	

•  Behavior	

•  Timing	

Microarchitecture	

FuncFonal	
 Level	

•  Behavior	

VLSI	
 •  Behavior	

•  Timing	

•  Physical	
 Resources	
 Sea	
 of	
 Transistors	

ApplicaFons	

Register	
 Transfer	
 Level	

1	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

Cycle	
 Level	

•  Behavior	

•  Timing	

FuncFonal	
 Level	

•  Behavior	

Register	
 Transfer	
 Level	

•  Behavior	

•  Timing	

•  Physical	
 Resources	

Register	
 Transfer	
 Level	

Modeling	
 Towards	
 Layout

2	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

Cycle	
 Level	

FuncFonal	
 Level	

Register	
 Transfer	
 Level	
 Register	
 Transfer	
 Level	

TradiFonal	

Modeling	
 Towards	
 Layout

2	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

Cycle	
 Level	

FuncFonal	
 Level	

Register	
 Transfer	
 Level	
 Register	
 Transfer	
 Level	

Modeling	
 Towards	
 Layout
PyMTL

2	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

Cycle	
 Level	

FuncFonal	
 Level	

Register	
 Transfer	
 Level	
 Register	
 Transfer	
 Level	

Modeling	
 Towards	
 Layout

Programmer	

Produc8vity	

	

	
 ☺	

PyMTL

2	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

Cycle	
 Level	

FuncFonal	
 Level	

Register	
 Transfer	
 Level	
 Register	
 Transfer	
 Level	

Modeling	
 Towards	
 Layout

Simula8on	

Performance	

	

	
 "	

Programmer	

Produc8vity	

	

	
 ☺	

PyMTL

2	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

Cycle	
 Level	

FuncFonal	
 Level	

Register	
 Transfer	
 Level	
 Register	
 Transfer	
 Level	

Solu8on:	

SimJIT	

3	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

Cycle	
 Level	

FuncFonal	
 Level	

Register	
 Transfer	
 Level	
 Register	
 Transfer	
 Level	

Solu8on:	

SimJIT	

3	

PyMTL&
RTL&Model&
Instance&

Transla3on&

Verilator&

LLVM/GCC& Wrapper&
Gen&

Verilog&
Source&

PyMTL&
CFFI&Model&
Instance&

RTL&C++&
Source&

C&Interface&
Source&

C&Shared&
Library&

Transla3on&
Cache&

SimJIT-RTL Tool

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

PyMTL:	
 A	
 Unified	
 Framework	
 for	
 Ver8cally	
 Integrated	

Computer	
 Architecture	
 Research	

Session	
 3A:	
 Methodology,	
 Modeling,	
 and	
 Tools	

Cycle	
 Level	

FuncFonal	
 Level	

Register	
 Transfer	
 Level	
 Register	
 Transfer	
 Level	

Solu8on:	

SimJIT	

SimJIT-­‐CL	

72x	
 Speedup
(within	
 4.5x	
 of	
 C++)	

SimJIT-­‐RTL	

200x	
 Speedup	

(within	
 6x	
 of	
 Verilator)	

3	

next	
 paper	

1 | December 2014

CALCULATING ARCHITECTURAL

VULNERABILITY FACTORS

FOR SPATIAL MULTI-BIT

TRANSIENT FAULTS

Mark Wilkening1, Vilas Sridharan2, Si Li3, Fritz Previlon1, Sudhanva

Gurumurthi4 and David R. Kaeli1

1ECE Department, Northeastern University, Boston, MA, USA
2RAS Architecture, Advanced Micro Devices, Inc., Boxborough, MA, USA

3ECE Department, Georgia Institute of Technology, Atlanta, GA, USA
4AMD Research, Advanced Micro Devices, Inc., Boxborough, MA, USA

2 | December 2014

INTRODUCTION AND MOTIVATION

 Particle-induced transient faults in SRAM are the dominant contributor to

microprocessor faults [Baumann 2005]

 High energy particles deposit charge in silicon

 This can invert the state of logic devices and cause one or more bit flips

 Multi-bit transient faults have become more important as technology

scales

 Number and size of multi-bit faults is increasing [Ibe 2010]

 Trend will continue despite FinFETs [Seifert 2012]

 Methods to characterize the impact of multi-bit faults are lacking

3 | December 2014

WHAT IS THIS PAPER ABOUT?

 We introduce architectural vulnerability factors for multi-bit transient faults (MB-

AVFs)

 We measure MB-AVFs for detected, uncorrected errors (DUE MB-AVF)

 We approximate MB-AVFs for silent data corruption (SDC MB-AVF)

 We show how MB-AVFs can be used to make design trade-offs

0E+00
1E+04
2E+04
3E+04
4E+04
5E+04
6E+04
7E+04

SD
C

 R
at

e
(a

.u
.)

next	
 paper	

Using ECC Feedback to Guide
Voltage Speculation in

Low-Voltage Processors

Anys Bacha and Radu Teodorescu
Department of Computer Science and Engineering

safe Vdd

Vdd

High Guardbands in Modern Processors

10-20%

nominal Vdd

safe Vdd

Vdd

High Guardbands in Modern Processors

Energy

inefficient

10-20%

nominal Vdd

safe Vdd

Vdd

High Guardbands in Modern Processors

CPU Core

ECC Guided Voltage Speculation

Find weakest
cache line

CPU Core

Find weakest
cache line

Monitor weakest
cache line

nominal Vdd

safe Vdd

Vdd

cache line

ECC Guided Voltage Speculation

CPU Core

Find weakest
cache line

Monitor weakest
cache line

nominal Vdd

safe Vdd

Vdd

cache line

ECC Guided Voltage Speculation

CPU Core

Caution

ECC Feedback

Find weakest
cache line

Monitor weakest
cache line

nominal Vdd

safe Vdd

Vdd

cache line

ECC Guided Voltage Speculation

Real

System

Real

System

Real

Results

33%
Energy Savings

Real

System

Real

Results

33%
Energy Savings

Real

System

Real

Results
Coming soon to an

Umney Theatre near you!

next	
 paper	

University of Michigan
Electrical Engineering and Computer Science

Harnessing Soft Computation for
Low-Budget Fault Tolerance

Daya S Khudia
Scott Mahlke

Advanced Computer Architecture Laboratory

University of Michigan, Ann Arbor

1

University of Michigan
Electrical Engineering and Computer Science

Acceptable Vs. Unacceptable Outputs

✓

Particle Strike Electrical Noise

PSNR > thr

2

University of Michigan
Electrical Engineering and Computer Science

Acceptable Vs. Unacceptable Outputs

✓

✗	

Particle Strike Electrical Noise

PSNR > thr

PSNR < thr

2

University of Michigan
Electrical Engineering and Computer Science

Acceptable Vs. Unacceptable Outputs

✓

✗	

Particle Strike Electrical Noise

Goal: Reduce unacceptable
outputs at low-cost

PSNR > thr

PSNR < thr

2

University of Michigan
Electrical Engineering and Computer Science

Traditional Duplication

-­‐-­‐-­‐	

op2

op1

-­‐-­‐-­‐	

Dop1

cmp

Tr
ig

ge
r r

ec
ov

er
y

br
F T

-­‐-­‐-­‐	

Dop2

-­‐-­‐-­‐	
 -­‐-­‐-­‐	

call

original instrs duplicated instrs

3

University of Michigan
Electrical Engineering and Computer Science

Expensive

Traditional Duplication

-­‐-­‐-­‐	

op2

op1

-­‐-­‐-­‐	

Dop1

cmp

Tr
ig

ge
r r

ec
ov

er
y

br
F T

-­‐-­‐-­‐	

Dop2

-­‐-­‐-­‐	
 -­‐-­‐-­‐	

call

original instrs duplicated instrs

1.6x overhead

3

University of Michigan
Electrical Engineering and Computer Science

Expensive

Traditional Duplication

-­‐-­‐-­‐	

op2

op1

-­‐-­‐-­‐	

Dop1

cmp

Tr
ig

ge
r r

ec
ov

er
y

br
F T

-­‐-­‐-­‐	

Dop2

-­‐-­‐-­‐	
 -­‐-­‐-­‐	

call

original instrs duplicated instrs

1.6x overhead

How can we reduce
this overhead for soft

computations?

3

University of Michigan
Electrical Engineering and Computer Science

Selective Duplication and Value Checks

• Duplication for critical
variables

•  Exploit value locality and
check for deviations

op2	
 op2	
 =	
 op3	
 *	
 op4	

-Produces 0 more than thr
-Insert value comparison

-­‐-­‐-­‐	
 -­‐-­‐-­‐	

-­‐-­‐-­‐	

2.8x 1.2x
Performance Overhead Reduction in

unacceptable outputs
4

next	
 paper	

1

Skewed Compressed Cache Micro 2014

Decoupled Compressed Cache Micro 2013

Skewed TLB IEEE TC 2004

Somayeh Sardashti André Seznec David A. Wood

 UW-Madison INRIA/IRISA UW-Madison

2

From Decoupled Compressed Cache:
•  Compression factor is a spatial property
•  Leverage superblocks to limit tag overhead
•  Complex look-up and replacement management
•  Meta data overhead

From Skewed TLB:
•  A mutiple grain structure in a N-way (skewed) cache

•  The analogy:
At read time, page size (compression factor) is unknown

What did we borrow?

3

2 x x

0

4

 x x

 x x x x

4 x x

 0 x x

2 x

3 x

1 x

Superblock A000

x 1 x 8 x 4 x 2

Superblock B000

x 2 x 4 x 8 x 1

4

•  Leverages spatial compression factor locality
•  « x 2 » the LLC size

•  Direct tag-data mapping
•  Simple allocation/replacement automaton
•  No meta-data, only 1.6 % storage overhead

next	
 paper	

Adaptive Cache Management
for Energy-efficient GPU Computing

§  Many cache sensitive GPU applications have severe cache
contention → low cache efficiency → poor performance
–  Smaller L1 cache capacity per thread

§  Existing management schemes have limitations
§  We propose Coordinated Bypassing and Warp Throttling

(CBWT) to improve GPU cache efficiency
–  Reduce cache contention rate and NoC latency

Xuhao Chen1,2,3, Li-Wen Chang3, Chris Rodrigues3, Jie Lv3, Zhiying Wang1,2, Wen-Mei Hwu3

[1] State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China
[2] School of Computer, National University of Defense Technology, Changsha, China
[3] Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA

 0

 1

 2

 3

 4

BFS KMN PVC SSC PVR IIX WC HarM

N
or

m
al

iz
ed

 I
PC

8.
2
8.

5

32KB
64KB

128KB
256KB
512KB

A 2.68x speedup on average
(harmonic mean) for highly
cache sensitive (HCS)
benchmarks

Observations – Understanding the Limitations
§  Cache bypassing retains

useful cache lines instead of
replacing upon miss
ü Retain useful data → fewer

 cache misses per thread
² Average HCS speedup 1.57x

X  High demand on NoC to serve
 misses, i.e. congestion

X  Still cannot avoid locality loss

§  Warp throttling temporarily
deactivates some threads
ü Fewer threads → more cache

 per thread → fewer misses
X  Few threads → cannot hide

 latency through multithreading
X  Resource under-utilization 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0 4 8 12 16 20 24

No
rm

al
iz

ed
 IP

C

Maximum Active Warps (MAW)

SWL
SWL+bypass

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 I
P
C

Protection Distance
HCS

BFS
KMN
PVC
SSC
PVR

IIX
WC

1.84x (SWL+bypass) 1.38x (bypass) 1.46x (SWL)

SWL: Static Wavefront Limiting
(warp throttling)

CBWT Architecture Overview
§  Extra sampling modules

(yellow blocks) are added
to monitor contention and
congestion.

§  Adjust the MAW to keep
the network in a busy but
low-congestion range.

Performance and Energy-efficiency

§  CBWT achieves an average of 74% (maximum 661%) IPC
improvement on HCS benchmarks over baseline, which
significantly outperforms PDP bypassing (42%) and Best-SWL
(52%).
–  PDP bypassing: pure cache bypassing
–  Best-SWL: pure warp throttling

§  CBWT outperforms the baseline with an average of 58.6% Perf/
Watt improvement
–  On average, PDP bypassing can reduce 16.5% of DRAM traffic,
–  CBWT reduces DRAM traffic by 54.9%

§  Welcome to Session 4A in Main Auditorium on Dec. 16
(Tuesday) at 11:10 AM for more details

next	
 paper	

Core

L1/
L2s

App1

Core

L1/
L2s

App2

Core

L1/
L2s

AppN

Core

L1/
L2s

App4

Core

L1/
L2s

Core

L1/
L2s

App3

⃛
⃛

⃛ Shared Last-level Cache

Problem: How to efficiently divide a
cache into hundreds of partitions?

Core

L1/
L2s

App1

Core

L1/
L2s

App2

Core

L1/
L2s

AppN

Core

L1/
L2s

App4

Core

L1/
L2s

Core

L1/
L2s

App3

⃛
⃛

⃛ Shared Last-level Cache

Hundreds of partitions

Problem: How to efficiently divide a
cache into hundreds of partitions?

Core

L1/
L2s

App1

Core

L1/
L2s

App2

Core

L1/
L2s

AppN

Core

L1/
L2s

App4

Core

L1/
L2s

Core

L1/
L2s

App3

⃛
⃛

⃛ Shared Last-level Cache

For each partition
✦ Precisely control its size (fine-grain)
✦ Maintain high associativity

Hundreds of partitions

Problem: How to efficiently divide a
cache into hundreds of partitions?

Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 1 Partition 2

Way partitioning

Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 1 Partition 2

Way partitioning

✘ Few coarse-grain partitions
✘ Low associativity

Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 1 Partition 2

Way partitioning

✘ Few coarse-grain partitions
✘ Low associativity

Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 3 Partition 4

Control the partition size by
adjusting eviction rate at

replacement

Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 1 Partition 2

Way partitioning

✘ Few coarse-grain partitions
✘ Low associativity

Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 3 Partition 4

Control the partition size by
adjusting eviction rate at

replacement
✔Able to support many

fine-grain partitions

Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 1 Partition 2

Way partitioning

✘ Few coarse-grain partitions
✘ Low associativity

Way1 Way3Way2

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Partition 3 Partition 4

Control the partition size by
adjusting eviction rate at

replacement
✔Able to support many

fine-grain partitions

How to precisely partition the
cache while still maintaining

high associativity?

Futility Scaling

Futility Scaling
Basic idea: control the size of each partition by properly
scaling the futility of its cache lines

Futility Scaling
Basic idea: control the size of each partition by properly
scaling the futility of its cache lines

Intuition:
Scaling up futility → cache lines are evaluated as less
useful → lower probability to be kept in the cache →
partition size is reduced

Futility Scaling
Basic idea: control the size of each partition by properly
scaling the futility of its cache lines

Intuition:
Scaling up futility → cache lines are evaluated as less
useful → lower probability to be kept in the cache →
partition size is reduced

More details are in our tomorrow’s talk:
✤ Futility estimation
✤ Scaling factor adjustment
✤ Feedback-based implementation

Tomorrow at 10:45am in Session 4A
“TLB and Cache Optimization”

Futility Scaling: High-
Associativity Cache Partitioning

Ruisheng Wang — University of Southern California
Lizhong Chen — Oregon State University

next	
 paper	

© 2014 IBM Corporation

Voltage Noise in Multi-core Processors:
Empirical Characterization and
Optimization Opportunities

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

15 December 2014

Ramon Bertran1, Alper Buyuktosunoglu1, Pradip Bose1,
Timothy J. Slegel2, Gerard Salem2, Sean Carey2,
Richard F. Rizzolo2, Thomas Strach2

1IBM Research
2IBM Systems & Technology Group

Full presentation:
Session 4B Managing Voltage and Time
Tomorrow at 10:45AM
Umney Theatre & Lounge room

© 2014 IBM Corporation

Voltage noise: Transient variations in supply voltage

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room

© 2014 IBM Corporation

Voltage noise: Transient variations in supply voltage

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room

Goal: define and validate an operating voltage
ensuring robust performance without being

overly conservative

© 2014 IBM Corporation

Voltage noise: Transient variations in supply voltage

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room

Goal: define and validate an operating voltage
ensuring robust performance without being

overly conservative

§Pre-silicon characterization is inadequate

§A systematic, direct measurement-based

characterization is required

© 2014 IBM Corporation

Voltage noise: Transient variations in supply voltage

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room

Goal: define and validate an operating voltage
ensuring robust performance without being

overly conservative

§Pre-silicon characterization is inadequate

§A systematic, direct measurement-based

characterization is required

Our work: Systematic noise
characterization and exploration of

optimization opportunities on zEC12

IBM

mainframe

processor

© 2014 IBM Corporation

Characterization of noise

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

Full presentation: Session 4B Managing Voltage and Time
Tomorrow at 10:45AM - Umney Theatre & Lounge room

© 2014 IBM Corporation

Do you want to understand voltage noise?

When:

Tomorrow, Tuesday 16th, Dec 2014

at 10:45AM

Where:

Umney Theatre & Lounge

Session 4B - Managing Voltage and Time

Please come to our poster session too!

The 47th Annual IEEE/ACM International Symposium on Microarchitecture

next	
 paper	

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Enabling Realistic Fine-Grain Voltage Scaling with
Reconfigurable Power Distribution Networks

Waclaw Godycki, Christopher Torng, Alyssa Apsel, Christopher Batten

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

VR

Off-chip
(board)

On-chip

Benefits of Integrated Voltage Regulation

I Reduced system cost
I Potential for fine-grain voltage scaling

(per-core, µs-scale voltage transitions)

Architecture and Analog Circuit
Co-Design Challenges

I Enabling per-core voltage regulation while
mitigating large regulator area overhead

I Choosing useful voltage levels
I Providing fast voltage transition times

Cornell University Christopher Torng 1 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Enabling Realistic Fine-Grain Voltage Scaling with
Reconfigurable Power Distribution Networks

Waclaw Godycki, Christopher Torng, Alyssa Apsel, Christopher Batten

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

VR

Off-chip
(board)

On-chip

Benefits of Integrated Voltage Regulation

I Reduced system cost
I Potential for fine-grain voltage scaling

(per-core, µs-scale voltage transitions)

Architecture and Analog Circuit
Co-Design Challenges

I Enabling per-core voltage regulation while
mitigating large regulator area overhead

I Choosing useful voltage levels
I Providing fast voltage transition times

Cornell University Christopher Torng 1 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Simple On-Chip Power Distribution Network

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

VR

Single Fixed Voltage Regulator

Cornell University Christopher Torng 2 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Simple On-Chip Power Distribution Network

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

VR

Single Fixed Voltage Regulator

Switched
Capacitor
Voltage
Regulator

Cornell University Christopher Torng 2 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Simple On-Chip Power Distribution Network

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

VR

Single Fixed Voltage Regulator

Switched
Capacitor
Voltage
Regulator

C
o
re

s
C

o
re

s

0

7

0

7

Length of Fine-Grain Activity Intervals

Knuth-Morris-Pratt String Search

Breadth-First Search

time

time

Core Busy Core Waiting Core join()

Cornell University Christopher Torng 2 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Simple On-Chip Power Distribution Network

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

VR

Single Fixed Voltage Regulator

Switched
Capacitor
Voltage
Regulator

C
o
re

s
C

o
re

s

0

7

0

7

Length of Fine-Grain Activity Intervals

Knuth-Morris-Pratt String Search

Breadth-First Search

time

time

Core Busy Core Waiting Core join()

90μs

7μs

Off-chip transition times
On-chip transition times

~ ms

~ μs

Cornell University Christopher Torng 2 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Multiple Adjustable Voltage Regulators Approach

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Adj.
VR

Adj.
VR

Adj.
VR

Cornell University Christopher Torng 3 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Multiple Adjustable Voltage Regulators Approach

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Adj.
VR

Adj.
VR

Adj.
VR

Nominal
Mode
(1.0V)

Super-Sprint
Mode

(1.33V)

Sprint
Mode

(1.15V)

Rest
Mode
(0.6V)

Cornell University Christopher Torng 3 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Multiple Adjustable Voltage Regulators Approach

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Adj.
VR

Adj.
VR

Adj.
VR

Nominal
Mode
(1.0V)

Super-Sprint
Mode

(1.33V)

Sprint
Mode

(1.15V)

Rest
Mode
(0.6V)

80

75

70

65

60

55

0.02 0.04 0.06 0.08

P
o
w

e
r

E
ff
ic

ie
n

c
y
 (

%
)

Area (mm2)

Chosen Design Point

Energy Storage Area Requirements
for Different Power Modes

Cornell University Christopher Torng 3 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Multiple Adjustable Voltage Regulators Approach

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Adj.
VR

Adj.
VR

Adj.
VR

Nominal
Mode
(1.0V)

Super-Sprint
Mode

(1.33V)

Sprint
Mode

(1.15V)

Rest
Mode
(0.6V)

80

75

70

65

60

55

0.02 0.04 0.06 0.08

P
o
w

e
r

E
ff
ic

ie
n

c
y
 (

%
)

Area (mm2)

Chosen Design Point

Energy Storage Area Requirements
for Different Power Modes

Possible Area Over-Provisioned

Cornell University Christopher Torng 3 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Multiple Adjustable Voltage Regulators Approach

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Adj.
VR

Adj.
VR

Adj.
VR

Nominal
Mode
(1.0V)

Super-Sprint
Mode

(1.33V)

Sprint
Mode

(1.15V)

Rest
Mode
(0.6V)

80

75

70

65

60

55

0.02 0.04 0.06 0.08

P
o
w

e
r

E
ff
ic

ie
n

c
y
 (

%
)

Area (mm2)

Chosen Design Point

Energy Storage Area Requirements
for Different Power Modes

Possible Area Over-Provisioned

Share Energy Storage

Cornell University Christopher Torng 3 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Reconfigurable Power Distribution Networks

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Shared Energy Storage

RPDN Switch Fabric

Unit cells of shared energy storage are
flexibly reconfigured to effectively create
multiple differently-sized SC regulators
“on-demand”.

Benefits of RPDN

I 10-50% performance and 10-70%
energy-efficiency improvement
compared to no FGVS

I 10× faster voltage transition times
compared with MAVR (µs to 100 ns)

I 40% less area compared to a more
traditional per-core regulation scheme

To hear more, come to the talk on Tuesday!

Cornell University Christopher Torng 4 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Reconfigurable Power Distribution Networks

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Shared Energy Storage

RPDN Switch Fabric

Unit cells of shared energy storage are
flexibly reconfigured to effectively create
multiple differently-sized SC regulators
“on-demand”.

Benefits of RPDN

I 10-50% performance and 10-70%
energy-efficiency improvement
compared to no FGVS

I 10× faster voltage transition times
compared with MAVR (µs to 100 ns)

I 40% less area compared to a more
traditional per-core regulation scheme

To hear more, come to the talk on Tuesday!

Cornell University Christopher Torng 4 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Reconfigurable Power Distribution Networks

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Shared Energy Storage

RPDN Switch Fabric

Unit cells of shared energy storage are
flexibly reconfigured to effectively create
multiple differently-sized SC regulators
“on-demand”.

Benefits of RPDN

I 10-50% performance and 10-70%
energy-efficiency improvement
compared to no FGVS

I 10× faster voltage transition times
compared with MAVR (µs to 100 ns)

I 40% less area compared to a more
traditional per-core regulation scheme

To hear more, come to the talk on Tuesday!

Cornell University Christopher Torng 4 / 4

• Session 4B (Managing Voltage and Time) – Talk on Tuesday from 11:10 AM - 11:35 AM •

Reconfigurable Power Distribution Networks

Core Core Core

Cache
Bank

Cache
Bank

Cache
Bank

On-Chip Interconnect

Shared Energy Storage

RPDN Switch Fabric

Unit cells of shared energy storage are
flexibly reconfigured to effectively create
multiple differently-sized SC regulators
“on-demand”.

Benefits of RPDN

I 10-50% performance and 10-70%
energy-efficiency improvement
compared to no FGVS

I 10× faster voltage transition times
compared with MAVR (µs to 100 ns)

I 40% less area compared to a more
traditional per-core regulation scheme

To hear more, come to the talk on Tuesday!

Cornell University Christopher Torng 4 / 4

next	
 paper	

Micro-sliced Virtual Processors
to Hide the Effect of Discontinuous CPU Availability

for Consolidated Systems

Jeongseob Ahn, Chang Hyun Park, and Jaehyuk Huh

Computer Science Department

KAIST

Tomorrow, Session 4B, paper3 @ Umney Theatre

1

Virtual Time Discontinuity

vCPU 1

Virtual time

Physical timepCPU0

vCPU 0
Time slice

Context Switching

Virtual CPUs are not always running

2

Interrupt with Virtualization

vCPU 1

pCPU0

vCPU 0

Interrupt

T

Interrupt occurs on vCPU0

2

Interrupt with Virtualization

vCPU 1

pCPU0

vCPU 0

Interrupt

T

Interrupt processing is delayed

2

Spinlock with Virtualization

vCPU 1

pCPU0

vCPU 0

T

vCPU0 holding a lock is preempted

2

Spinlock with Virtualization

vCPU 1

pCPU0

vCPU 0

T

vCPU1 starts spinning to acquire the lock

2

Spinlock with Virtualization

vCPU 1

pCPU0

vCPU 0

T

2

Lock acquiring is delayed

Toward Virtual Time Continuity

vCPU 1

vCPU 0

pCPU0

Shortened time slice

T

Short, but more frequent runs

3

Toward Virtual Time Continuity

vCPU 1

vCPU 0

pCPU0

Interrupt

T

Interrupt is handled sooner

3

Toward Virtual Time Continuity

vCPU 1

vCPU 0

pCPU0 T

Lock is acquired sooner

3

Overheads of Short Time Slice

vCPU 1

vCPU 0

pCPU0

Frequent context switching

Pollution of architectural structures

T

$ $ $

4

next	
 paper	

SMiTe: Precise QoS Prediction on Real-System SMT Processors
to Improve Utilization in Warehouse Scale Computers

Yunqi Zhang, Michael A. Laurenzano, Jason Mars, Lingjia Tang

Clarity-Lab
Electrical Engineering and Computer Science
University of Michigan

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Data centers are expensive

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Data centers are expensive

Low utilization leads to inefficiency

30%

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Resource Sharing

U
til

iz
at

io
n

No co-location

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Resource Sharing

U
til

iz
at

io
n

Shared Cache

Memory Bandwidth

No co-location CMP co-location

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Resource Sharing

U
til

iz
at

io
n

Shared Cache

Memory Bandwidth

Private Cache

Functional Units

Memory Ports

Branch Predictor

TLB

No co-location CMP co-location SMT co-location

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

< 2%
Prediction Error

42%
Utilization Improvement

Section 5A
Wednesday at 9:50 A.M.

next	
 paper	

A Front-end Execution Architecture for

High Energy Efficiency

Ryota Shioya*, Masahiro Goshima+, and Hideki Ando*

* Nagoya University

+ National Institute of Informatics

2

Front-end Execution Architecture (FXA)

Background:

OoO superscalar processors are fast,

but their energy efficiency is low

Even in heterogeneous architecture, big cores still

consume a large amount of energy

Goal:

Improving the energy efficiency of OoO SSPs

Approach:

Execute instructions in-order in a front-end

FXA has two execution units: IXU and OXU

3

FU

Register File

F
e
tc

h

R
e

n
a

m
e

Issue

Queue
FU

FU

Register File

IQ

F
e
tc

h

R
e

n
a

m
e

Conventional

FXA

FU

FU

FU

FU

FU

OoO Ex. Unit

(OXU)

In-order Ex. Unit

(IXU)
IXU functions as

a filter to OXU

Shrink

Back-end

Add FUs to front-end

Executes insns. in-order

4

FXA’s merit: improving energy efficiency

Merits:

FUs can be added to the IXU with low overhead,

and it improves performance

The IXU can execute over 50% insns in-order

The energy-consuming OXU is shrunk

Compared to Cortex A-57 (big)

5.7% higher IPC and 17% lower energy

consumption

25% higher performance energy ratio

(=the inverse of EDP)

next	
 paper	

Execution Drafting

Michael McKeown, Jonathan Balkind, David Wentzlaff

Princeton University

MICRO-47

Wednesday, December 17, 2014 – Session 5A – 9:50am

Energy Efficiency Through Computation Deduplication

Motivation

• Cloud Computing

• Data Center Energy
Efficiency

• Computation Deduplication

– Commonality in Applications

MICRO-47 December 17, 2014 2

Source:http://www.google.com/about/datacenters/gallery/ima
ges/_2000/CBF_009.jpg

Execution Drafting

3

Program A Instruction Program B Instruction

Fetch Stage Thread Select
Stage

Decode Stage Execute Stage Memory Stage Writeback
Stage

Successfully Drafted
Instructions

Lead Instructions
MICRO-47 December 17, 2014

Microarchitectural mechanism to improve energy efficiency in a
multithreaded core

Goal: Maximize
𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆

𝑬𝒏𝒆𝒓𝒈𝒚

Main Results

• Up to 20% performance/energy gain

• Minuscule performance

 degradation

• Small area overhead

• Potential in drafting more threads

4 MICRO-47 December 17, 2014

Wednesday, December 17, 2014 – Session 5A – 9:50am

next	
 paper	

PPEP: ONLINE PERFORMANCE, POWER, AND

ENERGY PREDICTION FRAMEWORK

Bo Su† Junli Gu‡ Li Shen† Wei Huang‡ Joseph L. Greathouse‡ Zhiying Wang†

and DVFS Space Exploration

†National University of Defense Technology ‡AMD Research

 Dynamic Voltage & Frequency Scaling Challenge

‒How to predict performance & power across VF states

 Difficulties on modern processor

‒Multiple clock domains

‒Multiple power planes

Cores

North Bridge

AMD FX-8320

Core

Clock Domain

& Power Plane

North Bridge

Clock Domain

& Power Plane

Scalable Not scalable

Cores

Cores Cores

Q1: PERFORMANCE PREDICTION

 LL-MAB: Miss Address Buffer (MAB) based
Leading Loads (LL) CPI Predictor;

Core

&

L1$

L2$

L3$

&

DRAM

Core Clock Domain Other Clock Domains

MAB0

MAB1

MAB2

…
MABn

MAB0
MAB1
MAB2

VF5

VF4

VF3

VF2

VF1

CPI(VF5)

CPI(VF3)

CPI(VF2)

CPI(VF1)

Performance Power

CPI(VF4)

Power(VF5)

Power(VF3)

Power(VF2)

Power(VF1)

Power(VF4)

Performance

prediction?

Core VF State

Running at: Running at:

3.2% error

>2X freq. diff.

Lower

Higher

Q2: POWER PREDICTION

 Power model: CPU Events + Temperature

 Power prediction: LL-MAB + 2 observations of CPU
events.

 4.2% error across 5 VF states.

CPI(VF5)

CPI(VF3)

CPI(VF2)

CPI(VF1)

Performance Power

Power(VF5)

Power(VF3)

Power(VF2)

Power(VF1)

Power(VF4)

CPU Power

prediction?

Running at: Running at:

Wednesday 11:05AM

CPI(VF4)

VF5

VF4

VF3

VF2

VF1

Core VF State

Lower

Higher

next	
 paper	

next	
 paper	

1UNIVERSITY OF MICHIGAN 11

1

Hi-Rise: A High-Radix Switch for 3D
Integration with Single-cycle Arbitration

Supreet Jeloka, Reetuparna Das, Ronald G. Dreslinski,
Trevor Mudge, David Blaauw

University of Michigan, Ann Arbor

Conventional
Switch

Hi-Rise

Hop Count Delay
Many-core systems
 Low-radix not scalable
Goal: 3D High-radix switch

Radix

2UNIVERSITY OF MICHIGAN

2D & 3D Switch Designs

2D Design 2D Partitioned

3D Stacking 3D Switch

3UNIVERSITY OF MICHIGAN

3D Switch Design Challenges

Local

Inter
-Layer

In
pu

ts

Outputs

Efficient High Radix 3D switch requires
Optimized datapath for connection heterogeneity
Fair low-cost arbitration for multi-stage switch

TS
V

TS
V

4UNIVERSITY OF MICHIGAN

True 3D Switch
Hierarchical datapath
Reduced TSVs

Class-based arbitration
Composable
Single cycle & Built-In

 64-Radix 4-Layer Hi-Rise
 2.2 GHz,10.65 Tbps
 44pJ / 128-bit transaction
 13% System speedup over FBFly

Proposed 3D-Switch: Hi-Rise

next	
 paper	

…
MEMMEM MEM

…
MEMMEM MEM

…
MEMMEM MEM

GPU …GPU

PCIe

Switches

IO

Hub

CPU

Multi-GPU System Design with Memory Networks

Gwangsun Kim, Minseok Lee, Jiyun Jeong, John Kim

Department of Computer Science, KAIST

…
MEMMEM MEM

…
MEMMEM MEM

…
MEMMEM MEM

GPU …GPU

PCIe

Switches

IO

Hub

CPU

Multi-GPU System Design with Memory Networks

Gwangsun Kim, Minseok Lee, Jiyun Jeong, John Kim

Department of Computer Science, KAIST

Data sharing cost is high.

Programming can be challenging.

…
MEMMEM MEM

…
MEMMEM MEM

…
MEMMEM MEM

GPU …GPU

PCIe

Switches

IO

Hub

CPU

Multi-GPU System Design with Memory Networks

Gwangsun Kim, Minseok Lee, Jiyun Jeong, John Kim

Department of Computer Science, KAIST

High Data transfer overhead

Memory Network

Logic layer

High-speed link

DRAM layers

I/O port

… Vault

controller

I/O port

Intra-HMC Network

Vault

controller

…

Vault

Hybrid Memory Cube (HMC)

Memory Network

Logic layer

High-speed link

DRAM layers

I/O port

… Vault

controller

I/O port

Intra-HMC Network

Vault

controller

…

Vault

Hybrid Memory Cube (HMC)

Multi-GPU System Design Space

How to design the different networks?

Multi-GPU System Design Space

…
MEM MEM

GPU …

PCIe Switches
IO

Hub

… …
GPU

GPU Memory Network

CPU

…

How to design the different networks?

Multi-GPU System Design Space

…
MEM MEM

GPU …

PCIe Switches
IO

Hub

… …
GPU

GPU Memory Network

CPU

…

CPU GPU …
…

Unified Memory Network

… …

GPU

How to design the different networks?

Multi-GPU System Design Space

…
MEM MEM

GPU …

PCIe Switches
IO

Hub

… …
GPU

GPU Memory Network

CPU

…

CPU GPU …
…

Unified Memory Network

… …

GPU

How to design the different networks?

Impact on multi-GPU programming?

Scalable Kernel Execution

GPU

Kernel

Scalable Kernel Execution

GPU

Kernel

Kernel

Source code

Modification

GPU GPU

Scalable Kernel Execution

GPU

Kernel

Kernel

Source code

Modification

GPU GPU

GPU GPU

Kernel

Virtual GPU

Scalable Kernel Execution

GPU

Kernel

Kernel

Source code

Modification

GPU GPU

GPU GPU

Kernel

Virtual GPU

Session 5B: Interconnects

(Wednesday)

next	
 paper	

Dodec: Random-Link, Low-Radix On-Chip Networks

Haofan Yang, Jyoti Tripathi, Natalie Enright Jerger, Dan Gibson

Session 5B: Wednesday @ 11:05

On-Chip Network Routers

4-ported router
©	
 umnet.com	

On-Chip Network Routers

4-ported router

Many-ported router
©	
 iamtraffic.org	

On-Chip Network Routers

4-ported router

Many-ported router

Simple 3-ported router
©	
 muppet.wikia.com	

Topological Choices	

2D	
 Mesh:	
 regular,	
 grid-­‐like	

•  Grid cities: government designed

©	
 wxs.ca	

Topological Choices	

©	
 city-­‐data.com	

•  Grid cities: government designed
•  Non-grid cities: grow organically based on how people

use them
•  Similarly, we consider irregular network structures that

might be more useful on-chip

Simple Routers + Irregular Networks!	

Dodec: Random-Link, Low-Radix On-Chip Networks

Session 5B: Wednesday @ 11:05

next	
 paper	

L R L RR L R L RR L R L RR

L R L RR
L R L RR
L R L RR

Monday

Wednesday

Friday

10
:00

12
:00

15
:00

17
:00

21
:00

Wormhole: Wisely Predicting
Multidimensional Branches

Jorge Albericio,
Joshua San Miguel,  

Natalie Enright Jerger, and Andreas Moshovos

Wednesday. 13:00
Session 6A

next	
 paper	

Dibakar Gope & Mikko H. Lipasti

University of Wisconsin – Madison

MICRO 2014

Bias-Free Branch Predictor

Why Another Branch Predictor?

Predictor consumes ~15% of core energy (ARM’s Cortex A15) 2

Correlations to ~256 branches Access to several tables

Our Solution: Filter Useless Context Out

3

Conventional

Predictor Table
…..

Filter

Useless Info

GHR:

Bias-Free Pred:

Our Solution: Filter Useless Context Out

4

Conventional

Predictor Table
…..

….. Bias-Free

Predictor

Table

Filter

Useless Info

GHR:

BF-GHR:

Bias-Free Pred:

smaller

compressed

Expand the effective reach of fixed length GHR

Our Solution: Bias-Free Branch Predictor

5

5-6%

Improvement

over OH-SNAP

TAGE-like

accuracy w/

fewer tables

Neural TAGE

Our Solution: Bias-Free Branch Predictor

6

5-6%

Improvement

over OH-SNAP

TAGE-like

accuracy w/

fewer tables

• What is useless information?

• How prevalent is it?

• How to make it work

Session 6A

WEDNESDAY

@ 1:25 PM

Neural TAGE

next	
 paper	

Loop-Aware Memory Prefetching

Using Code-Block Working Sets

*Prefetch in Bulk and Listen to Your Mother

Adi Fuchs Shie Mannor Uri Weiser Yoav Etsion

Electrical Engineering Computer Science

Technion – Israel Institute of Technology

Prefetch Aggressively on Tight Loops
(i.e., Prefetch in Bulk)

• Observation:
Working sets of tight loop
iterations (CBWS) are highly
interdependent

• Means:
Vector arithmetic to compute
CBWS differential vectors

• Objective:
Prefetch complete CBWS when
possible

The Compiler Identifies Tight Loops
(i.e., Listen to Your Mother)

“The compiler is your mother”

 Y. Patt

• The compiler tells us when

to use tight loop prefetcher
– Otherwise, fallback to high-

performance SMS prefetcher

for(…) {

 for(…) {

 BLOCK_BEGIN(0);

 …

 BLOCK_END(0);

 }

}

Speedup
Over 1.3x over SMS
for memory intensive
benchmarks

next	
 paper	

BuMP: Bulk Memory Access Prediction and Streaming
Stavros Volos, Javier Picorel, Babak Falsafi, Boris Grot

BuMP: Bulk Memory Access Prediction and Streaming
Stavros Volos, Javier Picorel, Babak Falsafi, Boris Grot

BuMP: Bulk Memory Access Prediction and Streaming
Stavros Volos, Javier Picorel, Babak Falsafi, Boris Grot

Datacenters: The Workhorses of Information Age

BuMP: Bulk Memory Access Prediction and Streaming
Stavros Volos, Javier Picorel, Babak Falsafi, Boris Grot

Datacenters: The Workhorses of Information Age

Electricity bills of $25 Billion per year

User Requests are Data-Intensive

User Requests are Data-Intensive

Vast DRAM-resident
datasets

User Requests are Data-Intensive

DRAM serves many
requests

DRAM: Major energy hog in datacenters

Vast DRAM-resident
datasets

User Requests are Data-Intensive

videos

index
pages

posts

Datasets Have Different Flavors

images

database
rows

posts

Datasets Have Different Flavors

index
pages

videos

images

database
rows

posts

Datasets Have Different Flavors

index
pages

videos

images

database
rows

posts

database
rows

Datasets Have Different Flavors

index
pages

videos

images

Common: DRAM is accessed in bulk

BuMP
Bulk Memory Access Prediction and Streaming

Prediction: Identify bulk accesses

BuMP
Bulk Memory Access Prediction and Streaming

Prediction: Identify bulk accesses

Streaming: Trigger bulk transfers to exploit locality

BuMP
Bulk Memory Access Prediction and Streaming

Prediction: Identify bulk accesses

Streaming: Trigger bulk transfers to exploit locality

For a 16-core server running datacenter applications

23% lower DRAM energy
11% higher throughput

BuMP
Bulk Memory Access Prediction and Streaming

Prediction: Identify bulk accesses

Streaming: Trigger bulk transfers to exploit locality

For a 16-core server running datacenter applications

23% lower DRAM energy
11% higher throughput

Session 6A, Wednesday at 2:15 PM

next	
 paper	

Protean Code: Achieving Near-free
Online Code Transformations for
Warehouse Scale Computers
Michael A. Laurenzano
Yunqi Zhang
Lingjia Tang
Jason Mars

!
Electrical Engineering and Computer Science
University of Michigan

Dynamism is everywhere

Datacenter

Mobile

Desktop

Program phases

User behavior varies

Apps begin and end

Unreliable hardware

Dynamism is everywhere

Datacenter

Mobile

Desktop

Program phases

User behavior varies

Apps begin and end

Unreliable hardware

Native code should change with the environment

Dynamism is everywhere

Datacenter

Mobile

Desktop

Program phases

User behavior varies

Apps begin and end

Unreliable hardware

Native code should change with the environment

Not possible today in production environments

conventional
dynamic
compiler

native

O
ve

rh
ea

d

protean

conventional
dynamic
compiler

native

O
ve

rh
ea

d

near-zero
overhead

Protean code is a breakthrough
• Compilation is asynchronous with near-zero overhead
• Dynamic code optimization is always available
• Static compilation choices do not have to be permanent

Come to my talk to hear about
• A new paradigm for thinking about compilation
• A fully functional, open source dynamic compiler infrastructure

implemented on top of LLVM
• A novel dynamic optimization that reduces the # of servers in the

datacenter by > 25%

Protean code is a breakthrough
• Compilation is asynchronous with near-zero overhead
• Dynamic code optimization is always available
• Static compilation choices do not have to be permanent

Come to my talk to hear about
• A new paradigm for thinking about compilation
• A fully functional, open source dynamic compiler infrastructure

implemented on top of LLVM
• A novel dynamic optimization that reduces the # of servers in the

datacenter by > 25%

Session 6B, Wednesday 1:00pm

next	
 paper	

Compiler Support for Optimizing
Memory Bank Level-Parallelism

Wei Ding, Diana Guttman, and Mahmut Kandemir

The Pennsylvania State University

• Last-level cache misses (memory accesses) are
important for good performance, but current
compilers focus on cache locality only

• Bank-level parallelism of LLC misses is critical to
performance

 How can a compiler optimize for bank-level
parallelism on a multicore processor?

Loop Tiling

Bank-Level Parallelism

i

j
data
dependence

iteration
point

tile

for i = 1..N
for j = 1..N

X[i,j] = X[i,j-1] + X[i-1,j-1]

i

j
data
dependence

iteration
point

Compiler Support for Optimizing Memory Bank Level-Parallelism

Bank 0 Bank 1 Bank 2 Bank 3

Row-buffers

X[1,3]  X[1,4]

Dependence-free
Tile Sets

Dependence
Analysis

Cache
Locality

Optimizations

Tiling and
Parallelization

Per-Tile
Cache Miss
Prediction

Tile
Scheduling

for BLP

Low-level
Optimizations

Compiler Support for Optimizing Memory Bank Level-Parallelism

…

…

Cache
Miss

Equations

Banks
accessed by

each tile

Tile
Size

Compiler Support for Optimizing
Memory Bank Level-Parallelism

Average bank-level parallelism improvement of 17.1%

Average memory access latency reduction of 9.2%

Please come to the full-length presentation!
• Extensions to consider memory controller-level

parallelism and row-buffer locality

• Algorithm details

• Detailed results

Session 6B: Compilation
and Code Generation
Wednesday, December 17
13:00 - 14:40
Room: Umney Theatre

next	
 paper	

Architectural Specialization for
Inter-Iteration Loop Dependence Patterns

Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu
Zhiru Zhang, Christopher Batten

Computer Systems Laboratory
School of Electrical and Computer Engineering

Cornell University

47th Int’tl Symp. on Microarchitecture, Dec 2014
Session 6B: Compilation and Code Generation

• Problem • Solution Results

Loop Dependence Pattern Specialization

Iteration
0

inst0
inst1
inst2
inst3
...
branch

Iteration
1

inst0
inst1
inst2
inst3
...
branch

inst0
inst1
inst2
inst3
...
branch

Iteration
2

inst0
inst1
inst2
inst3
...
branch

Iteration
3

inst0
inst1
inst2
inst3
...
branch

Iteration
n-1

Intra-Iteration
Micro-op Fusion,

ASIPs, CCA

Inter-Iteration
Subword-SIMD,

Vector, GPU

Both
DySER, Qs-Cores,

BERET

Key Challenge: Creating HW/SW abstractions that are
flexible and enable performance-portable execution

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 2 / 4

Problem • Solution • Results

loop:
 lw r4, 0(r3)
 lw r5, 0(rA)
 mul r6, r4, r5
 addu rX, r6, rX
 sw rX, 0(r3)
 addiu.xi r3, 4
 addiu.xi rA, 4
 addiu r1, r1, 1
 xloop.orm r1, rN, loop

Iteration 0

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 1

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 2

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 3

inst0
inst1
inst2
inst3
...
xloop.orm

XLOOPS ISA

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 3 / 4

Problem • Solution • Results

loop:
 lw r4, 0(r3)
 lw r5, 0(rA)
 mul r6, r4, r5
 addu rX, r6, rX
 sw rX, 0(r3)
 addiu.xi r3, 4
 addiu.xi rA, 4
 addiu r1, r1, 1
 xloop.orm r1, rN, loop

Iteration 0

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 1

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 2

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 3

inst0
inst1
inst2
inst3
...
xloop.orm

XLOOPS ISA

#pragma xloop ordered
for (X=0, i=K; i<N; i++)
{
 A[i] = A[i] * A[i-K];
 X += A[i];
}

XLOOPS Compiler

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 3 / 4

Problem • Solution • Results

loop:
 lw r4, 0(r3)
 lw r5, 0(rA)
 mul r6, r4, r5
 addu rX, r6, rX
 sw rX, 0(r3)
 addiu.xi r3, 4
 addiu.xi rA, 4
 addiu r1, r1, 1
 xloop.orm r1, rN, loop

Iteration 0

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 1

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 2

inst0
inst1
inst2
inst3
...
xloop.orm

Iteration 3

inst0
inst1
inst2
inst3
...
xloop.orm

XLOOPS ISA

#pragma xloop ordered
for (X=0, i=K; i<N; i++)
{
 A[i] = A[i] * A[i-K];
 X += A[i];
}

XLOOPS Compiler
OoO GPP

L1 Data Cache

Lanes

Lane Manager

Mem XBar

XLOOPS Microarchitecture

Single-ISA hetereogenous architecture that transparently integrates
traditional processors and specialized loop-accelerators

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 3 / 4

Problem Solution • Results •

OoO GPP

L1 Data Cache

I Traditional Execution
Speedups close to 1×

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 4 / 4

Problem Solution • Results •

OoO GPP

L1 Data Cache

Lanes

Lane Manager

Mem XBar

I Traditional Execution
Speedups close to 1×

I Specialized Execution
Speedups 1.25–2.5×
Energy Efficiency 1.5–3×

0.5 1.0 1.5 2.0 2.5

Normalized Performance

0.5

1.0

1.5

2.0

2.5

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 E

ff
ic

ie
n

c
y

Higher Performance

Higher Power

Higher Performance

Lower Power

Lower

Performance

and Power

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 4 / 4

Problem Solution • Results •

OoO GPP

L1 Data Cache

OoO GPP

L1 Data Cache

Lanes

Lane Manager

Mem XBar

I Traditional Execution
Speedups close to 1×

I Specialized Execution
Speedups 1.25–2.5×
Energy Efficiency 1.5–3×

I Adaptive Execution
Dynamically Trade
Peformance vs. Energy Efficiency

0.5 1.0 1.5 2.0 2.5

Normalized Performance

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 E

ff
ic

ie
n
c
y

Specialized Adaptive

Session 6B Architectural Specialization for Inter-Iteration Loop Dependence Patterns 4 / 4

next	
 paper	

Specializing Compiler Optimizations
Through Programmable Composition For

Dense Matrix Computations

Qing Yi, Qian Wang, Huimin Cui

University of Colorado, Colorado Springs, USA

Institute Of Software & Institute of Computing, Chinese
Academy of Science

MICRO-2014 1

Motivation
•  What’s wrong with general purpose compilers?

–  Target all possible user applications
Try to attain the best average performance
Inferior to manual specialized optimizations

•  Independent optimization passes

–  Unpredictable Interferences among optimizations
Information loss from re-analyzing optimized code
Best optimization order is NP-complete

Loop
Optimizations

Register
Allocation

Instruction
Scheduling/
selection

Loop unrolling/
SIMD Vectorization

Redundancy
Elimination

12/17/2014 MICRO-2014 2

Overcoming The Uncertainties
•  Programmable composition of compiler optimizations

–  Eliminate optimization interferences
Analyze the original input source code only once
Enable fine-grained coordination among optimization passes

–  Pattern-based Specialization
Recognize known computational patterns
Specialize optimization customization and ordering

12/17/2014 MICRO-2014 3

parallelize l1
Loop unrolling

Redundancy Elimination:
address calculations of
A[k*lda+i], B[j*ldb+k],
C[j*ldc+i]

peephole opt
SIMD Vectorization: l3 Array copy:alpha*A[k*lda+i]

Scalar Replacement: A[k*lda+i], B[j*ldb+k], C[j*ldc+i]

Block l1-l3

Unroll&jam l1-l3

Loop splitting:remove
conditionals in loops)

Input AST (source code) + Coordination Handles + Tags

Optimization Workflow

•  Specialized optimization for dense-matrix kernels
–  Applied to 15 BLAS kernels and 15 applications in SPLASH-2
–  Kernel performance comparable to manual assembly programming

12/17/2014 MICRO-2014 4

Vendor
Compiler
(icc/gcc)

Optimized code

No pattern

Coordinated
Optimization

Pattern
Analysis

Conventional compiler
optimization phases

Opt configuration

Pattern-annotated code

Collective
Customization

Optimized code

next	
 paper	

 A Machine-Learning Supercomputer

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang,
Liqiang He, Jia Wang, Ling Li, Tianshi Chen,

Zhiwei Xu, Ninghui Sun, Olivier Temam

DNN: State-of-the-art Machine-
Learning Algorithm

Hardware for DNNs

Hardware for DNNs

Hardware for DNNs

Hardware for DNNs

× memory access

Hardware for DNNs

× memory access

大电脑

Hardware for DNNs

× memory access

A Supercomputer for DNNs
w/o memory access!

大电脑

Experimental Results

large speedups

energy saving

Experimental Results

See you in session 7

large speedups

energy saving

next	
 paper	

B-Fetch: Branch Prediction Directed
Prefetching for Chip-Multiprocessors

David Kadjo1, Jinchun Kim1, Prabal Sharma2, Reena Panda3,
Paul V. Gratz1, Daniel Jiménez4

1 Department of Electrical and Computer Engineering, Texas A&M University
2 Samsung R&D, Austin 3 Department of Electrical and Computer Engineering, University of Texas, Austin

4 Department of Computer Science & Engineering, Texas A&M University

Juicy
Enough?

Start()

Turkey Recipe

End()

Program: ./make Christmas_turkey

Spicy
Enough?

Gravy

Pepper

Decisions while cooking change

the flavor of the turkey

Juicy
Enough?

Start()

Turkey Recipe

End()

Program: ./make Christmas_turkey

Spicy
Enough?

Refrigerator
(Cache)

Market
(DRAM)

Gravy

Pepper

TOO FAR AWAY

Juicy
Enough?

Start()

Turkey Recipe

End()

Program: ./make Christmas_turkey

Spicy
Enough?

Gravy

Pepper

B-Fetch
Lookahead

Prefetch

Branch & Reg
Information

Refrigerator
(Cache)

Market
(DRAM)

Juicy
Enough?

Start()

Turkey Recipe

End()

Program: ./make Christmas_turkey

Spicy
Enough?

Gravy

Pepper

Gravy (45ml)

Pepper (20g)

B-Fetch
Lookahead

Prefetch

Branch & Reg
Information

Refrigerator
(Cache)

Market
(DRAM)

B-Fetch: Prefetching based on
 Branch Prediction

•  Path Speculation and Effective Address Speculation
–  Path speculation based on branch lookahead

–  Effective address speculation based on architectural register files

•  Light weight prefetcher leverages branch prediction
–  Provide 28% speed-up compared to the baseline without

 data prefetching
–  9% speed-up and 65% less storage than SMS [Somogyi 2006]

–  Join discussion at the Best Paper Section!
 Dec. 17th (Wednesday) 3PM at Main Auditorium

next	
 paper	

Lustig, Pellauer, Martonosi, “PipeCheck”

PipeCheck: Specifying and Verifying
Microarchitectural Enforcement of

Memory Consistency Models

Session 7 (Best Paper Nominees), Paper 3, Wed @ 4pm

Princeton University Intel VSSAD
Daniel Lustig, Michael Pellauer, Margaret Martonosi

Lustig, Pellauer, Martonosi, “PipeCheck”

Motivation: Verify correctness of memory
consistency model implementation

CPU CPU

CPU CPU

Main Memory

L2$

Model:	
 TSO	

Lustig, Pellauer, Martonosi, “PipeCheck”

Motivation: Verify correctness of memory
consistency model implementation

CPU CPU

CPU CPU CPU CPU
CPU CPU

Acc.
DSP
DSP

Main Memory

L2$ L2$ L2$ L2$ L2$

GPU GPU
GPU GPU

GPU
GPU
Model:	
 “Weak”?	
 Model:	
 ARM	

Model:	
 TSO	

Models:	
 ???	

•  Heterogeneity	
 à	
 even	
 harder	
 to	
 verify!	

Lustig, Pellauer, Martonosi, “PipeCheck”

Architecture-Level Analyses Cannot
Distinguish Between Implementations

Initially: [x]=[y]=0
Core 0 Core 1

(i1) st [x], 1
(i2) st [y], 1

(i3) ld [y] à r1
(i4) ld [x] à r2

TSO: Forbid: r1=1, r2=0

i1

i2

i3

i4

PPO PPO

From-reads
[Alglave, FMSD ’12, Owens et al., TPHOLs ‘09]

•  Arch.-­‐level	
 models	

cannot	
 analyze/verify	

the	
 behavior	
 of:	

– Out-­‐of-­‐Order	

Execu@on	

– Specula@ve	
 load	

reordering	

– Other	
 µarch.	

op@miza@ons	

Lustig, Pellauer, Martonosi, “PipeCheck”

PipeCheck: Verifying Microarchitectural
Enforcement of Consistency Models

Writeback

Memory

Store
Buffer

Memory
Hierarchy

Loads
Execute

Decode

Fetch

•  Verify	
 a	
 given	
 µarch	
 w.r.t.	
 architectural	
 spec.	

•  Successes:	
 fast	
 automated	
 verifica@on;	
 bugs	
 found	

i1

i2

i3

i4

PPO PPO

From-reads

µarch	
 happens-­‐
before	
 graphs	

next	
 paper	

Equalizer: Dynamically Tuning
GPU Resources for Efficient

Execution

Ankit Sethia* Scott Mahlke
University of Michigan

University of Michigan
Electrical Engineering and Computer Science

Imbalanced GPU resource utilization

Imbalanced GPU resource utilization

Imbalanced GPU resource utilization

Large number of threads cause early
saturation of some resources
and under-utilization of others

Imbalanced GPU resource utilization

Boost bottleneck resource for
performance improvement

Opportunity 1:

Throttle under-utilized
resources for energy savings

Opportunity 2:

Kernels saturate one resource
much faster than others

Kernels saturate one resource
much faster than others

•  Observe kernel’s hardware
requirements

•  Modulate hardware through:
!  Core frequency
!  Memory frequency
!  Number of threads

Equalizer
Decode Equalizer Issue

Counters
I - buffer

•  Calculate state of warps over window of cycles
•  Request new hardware parameters

Algorithm Request new
parameters

State of
warps

Equalizer
Decode Equalizer Issue

Counters
I - buffer

•  Calculate state of warps over window of cycles
•  Request new hardware parameters

Algorithm Request new
parameters

State of
warps

Boosting bottleneck resources:
22% speedup, 6% energy overhead
Throttling under-utilized resources:
15% energy savings, 5% speedup

next	
 paper	

1

COMP: Compiler Optimization for
Manycore Processors

§  We are entering manycore era
–  Intel Xeon Phi, Tilera processors, etc.
–  Used as coprocessors

Linhai Song1, Min Feng2, Nishkam Ravi3, Yi Yang2 and Srimat Chakradhar2	

1University of Wisconsin-Madison
2NEC Laboratories America
3Cloudera Inc.	

PCIe

CPU Host Coprocessor
Intel Xeon Phi

•  61 in-order cores
•  512-bit wide SIMD

instructions and registers
•  4*61 = 244 hardware threads

Performance Bottleneck: Data
Transfer Overhead

2

#pragma offload target(mic:0)\
 in(sptprice, …:length(numOptions))\
 out(prices:length(numOptions))
#pragma omp parallel for private(i, price)
for (i=0; i<numOptions; i++) {
 price = BlkSchlsEqEuroNoDiv(
 sptprice[i], …, 0);
 prices[i] = price;
}

Time

Transfer:

Computation:

0

0.5

1

1.5

2

2.5

Transfer Calculation

Time breakdown for Blackscholes

Computation

Our Compiler Optimizations

§  Data streaming
–  Automatically overlap data transfers and computations to

reduce data transfer overhead
–  Designed to minimize the device memory usage while

maximizing the performance
–  Avoid the overhead of launching the same kernel for multiple

times

§  Regularization
–  Enable data streaming in the presence of irregular accesses
–  Eliminate unnecessary data transfer
–  Improve vectorization and locality

§  New shared memory mechanism
–  Designed to quickly transfer pointer-based data structures

between host and device
3

0

1

2

3

4

5

6

7
bl

ac
ks

ch
ol

es

st
re

am
cl

us
te

r

fe
rr

et

de
du

p

fre
qm

in
e

km
ea

ns

C
G

cf
d nn

sr
ad

bf
s

ho
ts

po
t

av
er

ag
e

CPU Xeon Phi w/o COMP Xeon Phi w/ COMP

Evaluation

4

Our optimizations benefit 9 out of 12 benchmarks.
(1.16x ~ 52.21x speedups)

S
pe

ed
up

s

end	

end	

	session1A-paper1
	next-paper
	session1A-paper2
	session1A-paper2-next-paper
	session1A-paper3
	session1A-paper3-next-paper
	session1A-paper4
	session1A-paper4-next-paper
	session1A-paper5
	session1A-paper5-next-paper
	session1B-paper1
	session1B-paper1-next-paper
	session1B-paper2
	session1B-paper2-next-paper
	session1B-paper3
	session1B-paper3-next-paper
	session1B-paper4
	session1B-paper4-next-paper
	session1B-paper5
	session1B-paper5-next-paper
	session2A-paper1
	session2A-paper1-next-paper
	session2A-paper2
	session2A-paper2-next-paper
	session2A-paper3
	session2A-paper3-next-paper
	session2A-paper4
	session2A-paper4-next-paper
	session2A-paper5
	session2A-paper5-next-paper
	session2B-paper1
	Slide 1
	Slide 4
	Slide 5
	Slide 6

	session2B-paper1-next-paper
	session2B-paper2
	session2B-paper2-next-paper
	session2B-paper3
	session2B-paper3-next-paper
	session2B-paper4
	session2B-paper4-next-paper
	session2B-paper5
	session2B-paper5-next-paper
	session3A-paper1
	RpStacks:�Fast and Accurate �Processor Design Space Exploration �Using Representative Stall-Event Stacks
	Slow and expensive
	Slow and expensive
	Slow and expensive
	Simultaneous representative-path analysis
	Simultaneous representative-path analysis
	Simultaneous representative-path analysis
	Simultaneous representative-path analysis
	Simultaneous representative-path analysis
	Fast and accurate

	session3A-paper1-next-paper
	session3A-paper2
	session3A-paper2-next-paper
	session3A-paper3
	session3A-paper3-next-paper
	session3B-paper1
	session3B-paper1-next-paper
	session3B-paper2
	session3B-paper2-next-paper
	session3B-paper3
	session3B-paper3-next-paper
	session4A-paper1
	session4A-paper1-next-paper
	session4A-paper2
	session4A-paper2-next-paper
	session4A-paper3
	session4A-paper3-next-paper
	session4B-paper1
	session4B-paper1-next-paper
	session4B-paper2
	session4B-paper2-next-paper
	session4B-paper3
	session4B-paper3-next-paper
	session5A-paper1
	session5A-paper1-next-paper
	session5A-paper2
	session5A-paper2-next-paper
	session5A-paper3
	session5A-paper3-next-paper
	session5A-paper4
	session5A-paper4-next-paper
	session5B-paper1
	session5B-paper1-next-paper
	session5B-paper2
	Hi-Rise: A High-Radix Switch for 3D Integration with Single-cycle Arbitration
	2D & 3D Switch Designs
	3D Switch Design Challenges
	Proposed 3D-Switch: Hi-Rise

	session5B-paper2-next-paper
	session5B-paper3
	session5B-paper3-next-paper
	session5B-paper4
	session5B-paper4-next-paper
	session6A-paper1
	session6A-paper1-next-paper
	session6A-paper2
	session6A-paper2-next-paper
	session6A-paper3
	session6A-paper3-next-paper
	session6A-paper4
	session6A-paper4-next-paper
	session6B-paper1
	session6B-paper1-next-paper
	session6B-paper2
	session6B-paper2-next-paper
	session6B-paper3
	session6B-paper3-next-paper
	session6B-paper4
	session6B-paper4-next-paper
	session7-paper1
	session7-paper1-next-paper
	session7-paper2
	session7-paper2-next-paper
	session7-paper3
	session7-paper3-next-paper
	session7-paper4
	session7-paper4-next-paper
	session7-paper5
	session7-paper5-next-paper
	session7-paper5zend

