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Our World is Data-Driven!"

"
"
"

"

"

Need high-throughput and energy-efficient index lookups"

Data resides in huge databases"
–  Most frequent task: find data"
"

Indexes used for fast data lookup"
–  Rely on pointer-intensive data structures"

"
Indexing efficiency is critical "
–  Many requests, abundant parallelism "
–  Power-limited hardware"

"

Data!

Index!
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Inst. Window"
OoO Core"

Index Lookups on General-Purpose Cores "

OoO cores are ill-matched to indexing"

Index Lookups!
•  Data in memory"
•  Inherent parallelism"
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OoO Cores!
•  Pointer-chasing ! Low MLP"
•  Limited OoO inst. window"
–  One lookup at a time"

"Index Lookups"

Memory"



Widx: an Indexing Widget"
Specialized: Custom HW for index lookups"
–  Switch fewer transistors per lookup"
"

Parallel: Multiple lookups at once"
–  Extract parallelism beyond the OoO exec. window"
"

Programmable: Simple RISC cores"
–  Target a wide range of DBMSs"

3x higher throughput, 5.5x energy reduction vs. OoO"
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Outline"
"
•  Introduction"
•  Indexing in database systems"
•  Indexing inefficiencies in modern processors"
•  Widx"
•  Evaluation highlights"
•  Summary"
"
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Indexes are essential for all database operators"
–  Data structures for fast data lookup"

Hash index: fundamental index structure"
"
"
"
"
"
"
"

Dominant operation: join via hash index"
"
"

"

"

"
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Modern Databases & Indexing"

Hash Index"

6"

0"

1"

2"

Walk"

K!



Join"

Join: find the matching values in A and B"Lookup on index for every entry in A ""
Hash Index on B"

Join via Hash Index"

A" B"
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How Much Time is Spent Indexing?!
Measurement on Xeon 5670 CPU with 100GB Dataset"

Indexing is the biggest contributor to execution time"
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Dissecting Index Lookups"
Hash: Avg. 30% time of each lookup "
–  Computationally intensive, high cache locality"

Walk: Avg. 70% time of each lookup"
–  Trivial computation, low cache locality"

Next lookup: Inherently parallel"
–  Beyond the inst. window capacity"
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Inst. Window"
OoO Core"
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Roadmap for !
Efficient and High-Throughput Indexing"

"
1.  Specialize"
–  Customize hardware for hashing and walking"
"

2.  Parallelize"
–  Perform multiple index lookups at a time"

3.  Generalize"
–  Use a programmable building block"

"
"
"
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Step 1: Specialize"
Design a dedicated unit for hash and walk"
–  Hash: compute hash values from a key list"
–  Walk: access the hash index and follow pointers"

Specialized"
hash and walk hardware"

General-purpose"
OoO" 12"

Hash" Walk"



Step 2: Parallelize"
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Serial" Decoupled" Decoupled & Parallel"
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Widx unit: common building block for hash and walk"
–  Two-stage RISC core"
–  Custom ISA"
"

Widx units are programmable"
–  Execute functions written in Widx ISA"
–  Support limitless number of data structure layouts "

"

Step 3: Generalize"
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Widx unit"

hash( )"

H"

"
walk( )"
"

W" " " "



Putting it all together: Widx"
When Widx runs, core goes idle"
"
"

"
Widx"

Hash"
H" MMU"

OoO"
Core"

L1"

Widx"

Simple, parallel hardware"

W

W

W

W
P"

Result "
Producer"

Walkers"



Programming Model"

DBMS"
Index"
Code"

 "
Write code for each unit "
and compile for Widx ISA"

Communicate "
query-specific inputs"

Execution"Development"

H" W P"

Hash"

Walk"

Res. Produce"

Load the code"
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"
hash (arg1, arg2, …)"
{……}"

"

"
walk (arg1, arg2, …)"
{……}"

"

"
emit (arg1, arg2, …)"
{……}"

"
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Methodology"
Flexus simulation infrastructure [Wenisch '06]"
Benchmarks"

–  TPC-H on MonetDB"
–  TPC-DS on MonetDB"
–  Dataset: 100GB"

uArch Parameters"
–  Core Types"

•  OoO: 4-wide, 128-entry ROB"
•  In-order: 2-wide"

–  Frequency: 2GHz"
–  L1 (I & D): 32KB"
–  LLC: 4MB"

Area and Power"
–  Synopsys Design Compiler"
–  Technology node: TSMC 40 nm, std. cell"
–  Frequency: 2GHz"
–  Widx Area: 0.24mm2"

–  Widx Power: 0.3W "
"
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Widx Performance"

3x higher indexing throughput"
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Widx Efficiency"

5.5x reduction in indexing energy vs. OoO"
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Conclusions"
Indexing is essential in modern DBMSs"
"

Modern CPUs spend significant time in index lookups"
–  Not efficient & fall short of extracting parallelism"

"
Widx: Specialized widget for index lookups"
–  Efficient, parallel & programmable "

3x higher throughput, 5.5x energy reduction vs. OoO"
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Thanks!"
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