
Meet the Walkers !
Accelerating Index Traversals for In-Memory Databases"

Onur Kocberber"
Boris Grot, Javier Picorel, Babak Falsafi,"
Kevin Lim, Parthasarathy Ranganathan "



Our World is Data-Driven!"

"
"
"

"

"

Need high-throughput and energy-efficient index lookups"

Data resides in huge databases"
–  Most frequent task: find data"
"

Indexes used for fast data lookup"
–  Rely on pointer-intensive data structures"

"
Indexing efficiency is critical "
–  Many requests, abundant parallelism "
–  Power-limited hardware"

"

Data!

Index!

2"



Inst. Window"
OoO Core"

Index Lookups on General-Purpose Cores "

OoO cores are ill-matched to indexing"

Index Lookups!
•  Data in memory"
•  Inherent parallelism"

3"

OoO Cores!
•  Pointer-chasing ! Low MLP"
•  Limited OoO inst. window"
–  One lookup at a time"

"Index Lookups"

Memory"



Widx: an Indexing Widget"
Specialized: Custom HW for index lookups"
–  Switch fewer transistors per lookup"
"

Parallel: Multiple lookups at once"
–  Extract parallelism beyond the OoO exec. window"
"

Programmable: Simple RISC cores"
–  Target a wide range of DBMSs"

3x higher throughput, 5.5x energy reduction vs. OoO"
4"



Outline"
"
•  Introduction"
•  Indexing in database systems"
•  Indexing inefficiencies in modern processors"
•  Widx"
•  Evaluation highlights"
•  Summary"
"

5"



Indexes are essential for all database operators"
–  Data structures for fast data lookup"

Hash index: fundamental index structure"
"
"
"
"
"
"
"

Dominant operation: join via hash index"
"
"

"

"

"

T"R"

C" Q"

E" K"

Modern Databases & Indexing"

Hash Index"

6"

0"

1"

2"

Walk"

K!



Join"

Join: find the matching values in A and B"Lookup on index for every entry in A ""
Hash Index on B"

Join via Hash Index"

A" B"

7"

Walk"



How Much Time is Spent Indexing?!
Measurement on Xeon 5670 CPU with 100GB Dataset"

Indexing is the biggest contributor to execution time"

0"

25"

50"

75"

100"

2" 3" 5" 7" 8" 9" 11"13"14"15"17"18"19"20"21"22" 5" 37"40"43"46"52"64"81"82"

TPC-H" TPC-DS"

%
 o

f E
xe

cu
tio

n T
im

e"

Index " Scan " Sort & Join" Other"

8"



Dissecting Index Lookups"
Hash: Avg. 30% time of each lookup "
–  Computationally intensive, high cache locality"

Walk: Avg. 70% time of each lookup"
–  Trivial computation, low cache locality"

Next lookup: Inherently parallel"
–  Beyond the inst. window capacity"

9"

Inst. Window"
OoO Core"



Outline"

•  Introduction"
•  Indexing in Database Systems"
•  Indexing inefficiencies in modern processors"
•  Widx"
•  Evaluation highlights"
•  Summary"
"

10"



Roadmap for !
Efficient and High-Throughput Indexing"

"
1.  Specialize"
–  Customize hardware for hashing and walking"
"

2.  Parallelize"
–  Perform multiple index lookups at a time"

3.  Generalize"
–  Use a programmable building block"

"
"
"

11"



Step 1: Specialize"
Design a dedicated unit for hash and walk"
–  Hash: compute hash values from a key list"
–  Walk: access the hash index and follow pointers"

Specialized"
hash and walk hardware"

General-purpose"
OoO" 12"

Hash" Walk"



Step 2: Parallelize"
Ti

m
e"

Serial" Decoupled" Decoupled & Parallel"

H" W H" WH" W H" W



Widx unit: common building block for hash and walk"
–  Two-stage RISC core"
–  Custom ISA"
"

Widx units are programmable"
–  Execute functions written in Widx ISA"
–  Support limitless number of data structure layouts "

"

Step 3: Generalize"

14"

Widx unit"

hash( )"

H"

"
walk( )"
"

W" " " "



Putting it all together: Widx"
When Widx runs, core goes idle"
"
"

"
Widx"

Hash"
H" MMU"

OoO"
Core"

L1"

Widx"

Simple, parallel hardware"

W

W

W

W
P"

Result "
Producer"

Walkers"



Programming Model"

DBMS"
Index"
Code"

 "
Write code for each unit "
and compile for Widx ISA"

Communicate "
query-specific inputs"

Execution"Development"

H" W P"

Hash"

Walk"

Res. Produce"

Load the code"

16"

"
hash (arg1, arg2, …)"
{……}"

"

"
walk (arg1, arg2, …)"
{……}"

"

"
emit (arg1, arg2, …)"
{……}"

"



Outline"

•  Introduction"
•  Indexing in Database Systems"
•  Indexing inefficiencies in modern processors"
•  Widx"
•  Evaluation highlights"
•  Summary"
"

17"



Methodology"
Flexus simulation infrastructure [Wenisch '06]"
Benchmarks"

–  TPC-H on MonetDB"
–  TPC-DS on MonetDB"
–  Dataset: 100GB"

uArch Parameters"
–  Core Types"

•  OoO: 4-wide, 128-entry ROB"
•  In-order: 2-wide"

–  Frequency: 2GHz"
–  L1 (I & D): 32KB"
–  LLC: 4MB"

Area and Power"
–  Synopsys Design Compiler"
–  Technology node: TSMC 40 nm, std. cell"
–  Frequency: 2GHz"
–  Widx Area: 0.24mm2"

–  Widx Power: 0.3W "
"

18"



Widx Performance"

3x higher indexing throughput"

0"
1"
2"
3"
4"
5"
6"
qr

y2
"

qr
y1

1"

qr
y1

7"

qr
y1

9"

qr
y2

0"

qr
y2

2"

qr
y5
"

qr
y3

7"

qr
y4

0"

qr
y5

2"

qr
y6

4"

qr
y8

2"

TPC-H" TPC-DS"

In
de

xin
g 

Sp
ee

du
p"

OoO" Widx"

19"



0"

0.5"

1"

1.5"

2"

2.5"

Ru
nt

im
e"

Widx Efficiency"

5.5x reduction in indexing energy vs. OoO"
20"

0"

0.5"

1"

1.5"

2"

2.5"

En
er

gy
"

0"

0.5"

1"

1.5"

2"

2.5"

En
er

gy
-D

ela
y"



Conclusions"
Indexing is essential in modern DBMSs"
"

Modern CPUs spend significant time in index lookups"
–  Not efficient & fall short of extracting parallelism"

"
Widx: Specialized widget for index lookups"
–  Efficient, parallel & programmable "

3x higher throughput, 5.5x energy reduction vs. OoO"
21"



Thanks!"

22"


