
-  Data resides in huge databases!
-  Indexes are essential for all database operators!
-  Hash index: a fundamental index structure!

!
!
-  Frequent use case: join via hash index!

K!

0!

0.5!

1!

1.5!

2!

2.5!

Indexing Runtime! Energy!

M
et

ric
 o

f I
nt

er
es

t!
N

or
m

ali
ze

d
to

 O
oO
!

 !

OoO! In-order! Widx (w/ OoO)!

0!
25!
50!
75!

100!

2! 3! 5! 7! 8! 9! 11!13!14!15!17!18!19!20!21!22! 5! 37!40!43!46!52!64!81!82!
TPC-H! TPC-DS!

Pe
rc

en
ta

ge
 o

f !
Ex

ec
ut

io
n T

im
e! Index ! Scan ! Sort & Join! Other!

Meet the Walkers!
Accelerating Index Traversals for In-Memory Databases!

Onur Kocberber1, Boris Grot2, Javier Picorel1, Babak Falsafi1, Kevin Lim3, Parthasarathy Ranganathan4!
1EcoCloud, EPFL! !2University of Edinburgh !! !3HP Labs !4Google, Inc.!

Our World is Data-Driven! !

Putting it all together: Widx! Result Highlights!

Indexing is the biggest contributor to execution time!

T"R"

C" Q"

E" K"

Hash Index!

Walk!

0"
1"

2"

Specialized hash
and walk!
hardware!

General-purpose!
OoO!

Ti
m

e!

Serial! Decoupled! Decoupled & Parallel!

H! W
H! W H! W

2. Parallelize! 3. Generalize!

Widx!

Hash!
H! MMU!

OoO!
Core!

L1!

Widx"W

W

W

W
P!

Result !
Producer!

Walkers!

Simple, parallel hardware!

When Widx runs, core goes idle!
"""""

Design a dedicated unit for hash and walk!

Dissecting Index Lookups!

Hash: Avg. 30% time of each lookup!
 - Computationally intensive, high cache locality!
!
Walk: Avg. 70% time of each lookup!
 - Trivial computation, low cache locality!
!
Next lookup: Inherently parallel!
 - But, beyond the inst. window capacity!
!
!
"

Inst. Window!
OoO Core!

How Much Time is Spent Indexing?!

More details in the paper!!
-  Per query results!
-  Join kernel evaluation!
-  Programming model!
-  Bottleneck analysis!
-  Widx cycle breakdowns!
!

4This work was done while the author was at HP Labs!2This work was done while the author was at EPFL!

H! W

Hash! Walk!

hash()!

H!

!
walk()!
! W! ! ! !

-  Widx unit: common building block for hash and walk!
– Two-stage RISC core!
– Custom ISA!

!
!
-  Widx units are programmable!
– Execute functions written in Widx ISA!
– Support limitless number of data structure layouts !

!

Roadmap for efficient and !
high-throughput index lookups!
!
1.  Specialize!
–  Customize hardware for hash and walk!
!

2.  Parallelize!
–  Perform multiple index lookups at a time!

3.  Generalize!
–  Use a programmable building block!

Roadmap!

Measurement on Xeon 5670 CPU with 100GB Dataset on MonetDB!

1. Specialize!

Widx unit!

