
-  Data resides in huge databases!
-  Indexes are essential for all database operators!
-  Hash index:  a fundamental index structure!

!
!
-  Frequent use case: join via hash index!
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Meet the Walkers!
Accelerating Index Traversals for In-Memory Databases!
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Our World is Data-Driven! !

Putting it all together: Widx! Result Highlights!

Indexing is the biggest contributor to execution time!
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Simple, parallel hardware!

When Widx runs, core goes idle!
"""""

Design a dedicated unit for hash and walk!

Dissecting Index Lookups!

Hash: Avg. 30% time of each lookup!
    - Computationally intensive, high cache locality!
!
Walk: Avg. 70% time of each lookup!
    - Trivial computation, low cache locality!
!
Next lookup: Inherently parallel!
    - But, beyond the inst. window capacity!
!
!
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How Much Time is Spent Indexing?!

More details in the paper!!
-  Per query results!
-  Join kernel evaluation!
-  Programming model!
-  Bottleneck analysis!
-  Widx cycle breakdowns!
!

4This work was done while the author was at HP Labs!2This work was done while the author was at EPFL!
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-  Widx unit: common building block for hash and walk!
– Two-stage RISC core!
– Custom ISA!

!
!
-  Widx units are programmable!
– Execute functions written in Widx ISA!
– Support limitless number of data structure layouts !

!

Roadmap for efficient and !
high-throughput index lookups!
!
1.  Specialize!
–  Customize hardware for hash and walk!
!

2.  Parallelize!
–  Perform multiple index lookups at a time!

3.  Generalize!
–  Use a programmable building block!

Roadmap!

Measurement on Xeon 5670 CPU with 100GB Dataset on MonetDB!

1. Specialize!

Widx unit!


