
Aegis: Partitioning Data Block for Efficient Recovery
of Stuck-at-Faults in Phase Change Memory

Jie Fan, Jiwu Shu,
Youhui Zhang, and Weimin Zheng Song Jiang

-2-

Stuck-at Faults in PCM
PCM has limited endurance.

Stuck-at fault occurs when memory cell fails to change its

value.
 It is a major type of errors in PCM.
 Values in such faulty cells can still be read.
 The faults are permanent and accumulate.

Two general error correction approaches at the chip level.

 Pointer-based correction: Record the address of each faulty bit
and its replacement bit (e.g., ECP).

 Inversion-based correction: Partition data block into a number of
groups and exploit the fact that stuck-at values are still readable
(e.g., SAFER).

-3-

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PCM

Data Block

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Inversion
Vector

Write

Inversion-based Correction (Stuck-at-Right)

-4-

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PCM

Data Block

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Inversion
Vector

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Write

Inversion-based Correction (Stuck-at-Right)

-5-

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PCM

Data Block

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Inversion
Vector

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Write

Read

Inversion-based Correction (Stuck-at-Right)

-6-

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PCM

Data Block

Inversion-based Correction (Stuck-at-Wrong)

Data 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Inversion
Vector

-7-

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PCM

Data Block

Inversion-based Correction (Stuck-at-Wrong)

Data 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Inversion
Vector

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Invert & Write

-8-

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PCM

Data Block

Inversion-based Correction (Stuck-at-Wrong)

Data 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Inversion
Vector

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Invert & Write

Read & Invert

-9-

F

Inversion-based Correction: Two Faults

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inversion
Vector F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block 0 0

-10-

F

Inversion-based Correction: Two Faults

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inversion
Vector F

0 0 1 0
0 1 1 1

0 1 0 1

Partition Calculation
w/ Fault Addresses:

XOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block 0 0

-11-

F

Inversion-based Correction: Two Faults

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inversion
Vector F

Partition Vector

0 0 1 0
0 1 1 1

0 1 0 1

Partition Calculation
w/ Fault Addresses:

XOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block 0 0

-12-

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Group 0: Write
Inversion

Vector F F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block 0 0 0 0 0 0 0 0 0

Inversion-based Correction: Two Faults

-13-

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inversion
Vector F F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Group 1: Invert &Write

Inversion-based Correction: Two Faults

-14-

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inversion
Vector F F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Group 0: Read

0 0 0 0 0 0 0 0

Inversion-based Correction: Two Faults

-15-

Group 1: Read & Invert

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inversion
Vector F F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1

Inversion-based Correction: Two Faults

-16-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block

F

Inversion
Vector

Inversion-based Correction: the Third Fault

F F

-17-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block

F

0 1 1 1
1 1 1 1

1 0 0 0

Partition Calculation
w/ Fault Addresses:

XOR

Inversion
Vector

Inversion-based Correction: the Third Fault

F F

-18-

Partition vector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block

F

0 1 1 1
1 1 1 1

1 0 0 0

Partition Calculation
w/ Fault Addresses:

XOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block

Inversion
Vector

Inversion-based Correction: the Third Fault

F F

-19-

Partition vector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block

F

0 1 1 1
1 1 1 1

1 0 0 0

Partition Calculation
w/ Fault Addresses:

XOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Block

Inversion
Vector

Inversion-based Correction: the Third Fault

F F

In the worst scenario, with only five faults the block
cannot be furthered partitioned!

-20-

Issues with the State-of-the-art Partition Scheme

For a given data block of 𝑛 bits, there are only log𝟐 𝒏
partition configurations available to resolve fault
collisions.

 In the worst case, group count can increase
exponentially with accumulating faults.

Only log𝟐 𝒏 faults could exhaust the configurations and
essentially demand an inversion vector as large as the
data block itself.

-21-

Design Objectives of Aegis

A larger set of partition configurations for resolving
fault collision to tolerate more faults.
 A new configuration is needed whenever two faults collide

in a group.
 More candidate configurations mean more tolerable faults.

A smaller number of groups in each configuration to
reduce space overhead.
 Group count mainly determines space overhead.

Actively shuffling bits among groups to even out cell
wears.
 Cells in a group with faults wear out faster.

-22-

Design of Aegis: an Observation

First Partition
Configuration

(0,0) X

Y

(0,0) X

Y

Second Partition
Configuration

 Bits of a data block are placed on the Cartesian plane.
 A set of parallel lines defines a partition configuration.

Two faults in
the same group

Two faults in
different group

-23-

Aegis’s Group Partition Scheme

Aegis arranges bits of an 𝑛-bit data block on an 𝐴 × 𝐵 rectangle on
the Cartesian plane.

 Bits (𝑎, 𝑏), where 𝑏 = (𝑎 × 𝑘 + 𝑦) % 𝐵, for a given slope 𝑘 and
a given line 𝑦 , are in the same group.

 Each 𝑘 ∈ [0, 𝐵 − 1] corresponds to a partition configuration, and
each y ∈ [0, 𝐵 − 1] corresponds to a group in the configuration.

(0,0) X

Y

A = 5

B
 = 7

y = 3

 slope k = 3

-24-

Principle of Fault Collision Resolving

We have proved that under the Aegis
partition scheme:

Any two bits in the same group of a data
block in a partition configuration will not
be in the same group in a different partition
configuration as long as:

 𝐵 is a prime number.
 𝐴 ≤ 𝐵

(0,0) X

Y

A = 5

B
 = 7

b = 3

 slope k = 3

-25-

A Concern: How about Collisions after Re-partitions?

Slope = 0

(0,0) X

Y

A = 5

B
 = 7

There is possibility that multiple re-partitions are needed to
reach a configuration without any fault collisions.

(0,0) X

Y

A = 5

B
 = 7

Slope = 2 Slope = 1

(0,0) X

Y

A = 5

B
 = 7

-26-

Aegis Guarantees a Collision-free Configuration

 Collision of any pair of faults appear in only one partition configuration.

 A data block of 𝑓 faults can generate at most , or ×() , different

collisions of fault pairs.

 Each re-partition eliminates at least one such collision.

 As long as number of configurations in a partition scheme, B, is larger

than ×(), there exists at least one collision-free configuration.

 For a set of known faults, a pre-wired logic can be used to compute

collision-free configuration(s).

-27-

Aegis’s Advantages

To guarantee a tolerance of f faults:

 Aegis provides B partition configurations to resolve collisions.

(B is the minimal prime number satisfying < 𝐵)

 SAFER provides only 𝑓 usable configurations.

 Aegis has only 𝐵 groups in a configuration.

 SAFER has 𝟐𝒇 groups in a configuration.

 Aegis can have a much smaller space overhead.

-28-

Comparison of Space Cost

f (# of faults) 1 2 3 4 5 6 7 8 9 10

ECP 11 21 31 41 51 61 71 81 91 101

SAFER 1 7 14 22 35 55 91 159 292 552

Aegis 23 24 25 26 27 27 28 34 43 53

To guarantee a tolerance of f faults in a 512-bit data block:

-29-

Aegis-rw: Tolerate More faults

F

Data 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PCM

Data Block
0 0

 Assume we know the distinction between stuck-at-wrong
and stuck-at-right faults before the actual write.

 Use a fail cache to record fault locations and stuck-at values.

 Aegis-rw: allowing multiple W faults or R faults in a group.
 Only 𝑓 × 𝑓 + 1 partition configurations are required.

0 0
F F

-30-

Experimental Setup

 Cell lifetime follows the normal distribution with a mean
lifetime of 10 writes and a 25% coefficient of variance.

 A perfect wear leveling is assumed.

 A cell has a 50% probability to be updated in serving a write
request.

 Compare with ECP, SAFER, and RDIS. SAFER may use a
cache to avoid the second writes.

We continuously issue page (4KB) writes to a 8MB PCM

memory until all memory blocks are dead.

-31-

Average Number of Recoverable Faults in a 4KB Page

Faults: 293 vs. 711

-32-

Average Number of Recoverable Faults in a 4KB Page

Faults: 465 vs. 711

-33-

Average Number of Recoverable Faults in a 4KB Page

Faults: 264 vs. 474

-34-

Improvement of 4KB-page's Lifetime

Space overhead < 12.5%

-35-

Improvement of 4KB-page's Lifetime

Lifetime Improve.: 6.3X vs. 8.3X

-36-

Each Bit’s Contribution to the Lifetime Improvement

Higher than any non-Aegis schemes

-37-

Survival Rate of a 4KB-page

Agies17X31 allows 16% more writes
than SAFER32 of similar group count

-38-

Survival Rate of a 4KB-page

Agies9X61 uses only 42% overhead bits and doesn’t use
cache (compare to SAFER128-cache)

-39-

Compare Aegis with Aegis-rw

-40-

Conclusions

 To meet the demand on PCM’s high fault tolerance, Aegis
effectively separates many faults in different groups for
inversion-based recovery.

 To minimize space overhead, Aegis provides a large number
of partition configurations and a small number of groups in
each configuration.

 Extensive experiments show Aegis provides substantially
higher fault tolerance, longer lifetime, and lower cost.

