Aegis: Partitioning Data Block for Efficient Recovery of Stuck-at-Faults in Phase Change Memory

Jie Fan, Jiwu Shu, Youhui Zhang, and Weimin Zheng

Song Jiang

Wayne State UNIVERSITY

Stuck-at Faults in PCM

□ PCM has limited endurance.

- □ Stuck-at fault occurs when memory cell fails to change its value.
 - > It is a major type of errors in PCM.
 - > Values in such faulty cells can still be read.
 - > The faults are permanent and accumulate.

□ Two general error correction approaches at the chip level.

- Pointer-based correction: Record the address of each faulty bit and its replacement bit (e.g., ECP).
- Inversion-based correction: Partition data block into a number of groups and exploit the fact that stuck-at values are still readable (e.g., SAFER).

Inversion-based Correction (Stuck-at-Right)

Inversion-based Correction (Stuck-at-Right)

Inversion-based Correction (Stuck-at-Right)

Inversion-based Correction (Stuck-at-Wrong)

Inversion-based Correction (Stuck-at-Wrong)

Inversion-based Correction (Stuck-at-Wrong)

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

In the worst scenario, with only five faults the block cannot be furthered partitioned!

Issues with the State-of-the-art Partition Scheme

- □ For a given data block of n bits, there are only $\log_2 n$ partition configurations available to resolve fault collisions.
- □ In the worst case, group count can increase **exponentially** with accumulating faults.
- \Box Only $\log_2 n$ faults could exhaust the configurations and essentially demand an inversion vector as large as the data block itself.

Design Objectives of Aegis

- A larger set of partition configurations for resolving fault collision to tolerate more faults.
 - A new configuration is needed whenever two faults collide in a group.
 - > More candidate configurations mean more tolerable faults.
- □ A smaller number of groups in each configuration to reduce space overhead.
 - > Group count mainly determines space overhead.
- □ Actively shuffling bits among groups to even out cell wears.
 - > Cells in a group with faults wear out faster.

Design of Aegis: an Observation

Bits of a data block are placed on the Cartesian plane.
A set of parallel lines defines a partition configuration.

Aegis's Group Partition Scheme

 \Box Aegis arranges bits of an *n*-bit data block on an $A \times B$ rectangle on the Cartesian plane.

- □ Bits (*a*, *b*), where $b = (a \times k + y) \% B$ for a given slope *k* and a given line *y*, are in the same group.
- □ Each $k \in [0, B 1]$ corresponds to a partition configuration, and each y ∈ [0, B 1] corresponds to a group in the configuration.

Principle of Fault Collision Resolving

We have proved that under the Aegis partition scheme:

Any two bits in the same group of a data block in a partition configuration will not be in the same group in a different partition configuration as long as:

 $\square B \text{ is a prime number.}$ $\square A \leq B$

A Concern: How about Collisions after Re-partitions?

There is possibility that multiple re-partitions are needed to reach a configuration without any fault collisions.

Aegis Guarantees a Collision-free Configuration

- Collision of any pair of faults appear in only one partition configuration
- □ A data block of *f* faults can generate at most $\binom{f}{2}$, or $\frac{f \times (f+1)}{2}$, different collisions of fault pairs.
- □ Each re-partition eliminates at least one such collision.
- □ As long as number of configurations in a partition scheme, B, is larger

than $\frac{f \times (f+1)}{2}$ there exists at least one collision-free configuration.

□ For a set of known faults, a pre-wired logic can be used to compute collision-free configuration(s).

Aegis's Advantages

To guarantee a tolerance of *f* faults:

□ Aegis provides B partition configurations to resolve collisions. (B is the minimal prime number satisfying $\binom{f}{2} < B$)

> SAFER provides only f usable configurations.

 \Box Aegis has only *B* groups in a configuration.

> SAFER has 2^{f} groups in a configuration.

□ Aegis can have a much smaller space overhead.

Comparison of Space Cost

To guarantee a tolerance of *f* faults in a 512-bit data block:

f (# of faults)	1	2	3	4	5	6	7	8	9	10
ECP	11	21	31	41	51	61	71	81	91	101
SAFER	1	7	14	22	35	55	91	159	292	552
Aegis	23	24	25	26	27	27	28	34	43	53

Aegis-rw: Tolerate More faults

Assume we know the distinction between stuck-at-wrong and stuck-at-right faults before the actual write.

□ Use a fail cache to record fault locations and stuck-at values.

□ Aegis-rw: allowing multiple W faults or R faults in a group. > Only $f_w \times f_r + 1$ partition configurations are required.

Experimental Setup

- □ Cell lifetime follows the normal distribution with a mean lifetime of 10⁸ writes and a 25% coefficient of variance.
- □ A perfect wear leveling is assumed.
- □ A cell has a 50% probability to be updated in serving a write request.
- □ Compare with ECP, SAFER, and RDIS. SAFER may use a cache to avoid the second writes.
- We continuously issue page (4KB) writes to a 8MB PCM memory until all memory blocks are dead.

Average Number of Recoverable Faults in a 4KB Page

-31-

Average Number of Recoverable Faults in a 4KB Page

Average Number of Recoverable Faults in a 4KB Page

Improvement of 4KB-page's Lifetime

Improvement of 4KB-page's Lifetime

Each Bit's Contribution to the Lifetime Improvement

-36-

Survival Rate of a 4KB-page

Survival Rate of a 4KB-page

Compare Aegis with Aegis-rw

Conclusions

- To meet the demand on PCM's high fault tolerance, Aegis effectively separates many faults in different groups for inversion-based recovery.
- To minimize space overhead, Aegis provides a large number of partition configurations and a small number of groups in each configuration.
- Extensive experiments show Aegis provides substantially higher fault tolerance, longer lifetime, and lower cost.