Aegis: Partitioning Data Block for Efficient Recovery of Stuck-at-Faults in Phase Change Memory

Jie Fan, Jiwu Shu, Youhui Zhang, and Weimin Zhen

Song Jiang

Stuck-at Faults in PCM

- PCM has limited endurance.
- Stuck-at faults occur when memory cell fails to change its value.
 - > It is a major type of faults in PCM.
 - > This type of faults is permanent and accumulates.
 - > Values in such faulty cells can still be read.
- Inversion-based correction
 - Partition data block into a number of groups and exploit the fact that stuck-at values are still readable (e.g., SAFER).
 - > Each group can tolerate only one fault.

Proposal of an efficient partition scheme separating faults into different groups.

Illustration of Aegis Partition

- PCM bits are laid out on an A×B Cartesian plane.
- Aegis considers all points on a line as a group.
- Any two bits in the same line will not be in the same line after Aegis changes slope of the lines.
- Aegis distributes faults more evenly to tolerate more faults with lower overhead.

Fine-grained Heterogeneity

Traditional big.LITTLE Architecture

Transfer Overhead: ~20K cycles

Fine-grained Heterogeneity

Transfer Overhead: ~20K cycles

Fine-grained Heterogeneity

Transfer Overhead: ~20K cycles

Transfer Overhead: ~35 cycles

Code repeats (loops, functions)

Behavior repeats in the same program context

