
Aegis: Partitioning Data Block for Efficient Recovery
of Stuck-at-Faults in Phase Change Memory

Jie Fan, Jiwu Shu,

Youhui Zhang, and
Weimin Zhen

Song Jiang

-2-

Stuck-at Faults in PCM

! PCM has limited endurance.

! Stuck-at faults occur when memory cell fails to change
its value.
" It is a major type of faults in PCM.
" This type of faults is permanent and accumulates.
" Values in such faulty cells can still be read.

! Inversion-based correction
" Partition data block into a number of groups and exploit the fact

that stuck-at values are still readable (e.g., SAFER).
" Each group can tolerate only one fault.

! Proposal of an efficient partition scheme separating
faults into different groups.

-3-

(0,0) X

Y

A = 5

B
 =

 7

Illustration of Aegis Partition

(0,0) X

Y

A = 5

B
 =

 7

! PCM bits are laid out on an A!B Cartesian plane.

! Aegis considers all points on a line as a group.

! Any two bits in the same line will not be in the same line after
Aegis changes slope of the lines.

! Aegis distributes faults more evenly to tolerate more faults with
lower overhead.

Fine-grained Heterogeneity

Memory

Big Little

Traditional big.LITTLE Architecture

Transfer Overhead: ~20K cycles

$ $

Fine-grained Heterogeneity

Memory

Big Little

Traditional big.LITTLE Architecture

Transfer Overhead: ~20K cycles

$ $

Share
Architectural State

Fine-grained Heterogeneity

Memory

Big Little

Traditional big.LITTLE Architecture

Transfer Overhead: ~20K cycles

Memory

Big
Backend Little

Backend

Shared
Frontend

Composite Cores Architecture

Transfer Overhead: ~35 cycles

$ $

Share
Architectural State

Traditional Reactive
Controllers

0%

10%

20%

30%

40%

50%

60%

100 1K 10K 100K 1M

%
 T

im
e

Sp
en

t O
n

Li
tt

le

Instructions per Quantum

Oracle

Traditional Reactive
Controllers

0%

10%

20%

30%

40%

50%

60%

100 1K 10K 100K 1M

%
 T

im
e

Sp
en

t O
n

Li
tt

le

Instructions per Quantum

Oracle Composite CoresReactive

Don’t React – Predict!

Traditional Reactive
Controllers

0%
10%
20%
30%
40%
50%
60%

100 1K 10K 100K 1M

%
 T

im
e

Sp
en

t O
n

Li
tt

le

Instructions per Quantum

Oracle Composite CoresReactive

Don’t React – Predict!

Traditional Reactive
Controllers

Code repeats (loops, functions)

Behavior repeats in the same program context

0%
10%
20%
30%
40%
50%
60%

100 1K 10K 100K 1M

%
 T

im
e

Sp
en

t O
n

Li
tt

le

Instructions per Quantum

Oracle Composite CoresReactive

Don’t React – Predict!

Traditional Reactive
Controllers

Code repeats (loops, functions)

Behavior repeats in the same program context

0%
10%
20%
30%
40%
50%
60%

100 1K 10K 100K 1M

%
 T

im
e

Sp
en

t O
n

Li
tt

le

Instructions per Quantum

Oracle Composite CoresReactive

Big
Little

Construct
Super-Trace

Predict next
Super-Trace

Predict next
backend

Online Trace-Based Predictive Controller

Feedback

	session1Apaper1
	session1Apaper2
	session1Apaper3
	session1Bpaper1
	session1Bpaper2
	session1Bpaper3
	session2Apaper1
	session2Apaper2
	session2Apaper3
	session2Apaper4
	session2Bpaper1
	session2Bpaper2
	Blank Template Slide
	Slide 2
	Slide 3

	session2Bpaper3
	session2Bpaper4
	session3Apaper1
	session3Apaper2
	session3Apaper3
	session3Bpaper1
	session3Bpaper2
	session3Bpaper3
	session4Apaper1
	session4Apaper2
	session4Apaper3
	session4Bpaper1
	session4Bpaper2
	session4Bpaper3
	session5Apaper1
	session5Apaper2
	session5Apaper3
	session5Bpaper1
	session5Bpaper2
	session5Bpaper3
	session6Apaper1
	session6Apaper2
	session6Bpaper1
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	How to Turn Data Updates Into Permanent Records?
	How to Turn Data Updates Into Permanent Records?
	How to Turn Data Updates Into Permanent Records?
	How to Turn Data Updates Into Permanent Records?
	Slide Number 9

	session6Bpaper2
	session7paper1
	session7paper2
	session7paper3

