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Stuck-at Faults in PCM

! PCM has limited endurance.

! Stuck-at faults occur when memory cell fails to change 
its value.
" It is a major type of faults in PCM. 
" This type of faults is permanent and accumulates. 
" Values in such faulty cells can still be read.

! Inversion-based correction
" Partition data block into a number of groups and exploit the fact 

that stuck-at values are still readable (e.g., SAFER). 
" Each group can tolerate only one fault.

! Proposal of an efficient partition scheme separating 
faults into different groups.
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Illustration of Aegis Partition
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! PCM bits are laid out on an A!B Cartesian plane.

! Aegis considers all points on a line as a group.

! Any two bits in the same line will not be in the same line after 
Aegis changes slope of the lines.

! Aegis distributes faults more evenly to tolerate more faults with 
lower overhead.
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Don’t  React  – Predict!
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