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• Allow in-memory data structures to become permanent immediately 
• Demonstrated 32x speedup compared with using storage devices 

[Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11, Venkataraman+ FAST’11] 
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Why Can’t We Use Existing Systems on 
Persistent Memory? 

• Can’t just use an in-memory system – No persistence support 
- In-place updates to nonvolatile media may be interrupted without  
  completion in the event of power loss or system crashes 
- Interrupted writes could leave partially overwritten data or missing  
  references 
 

• Cant’ just use a storage system – Not optimized for memory 
- Overhead from database or file system interfaces, which assume and  
  are optimized for slow, block-addressable devices 
- Not optimized for fast, byte-addressable memory with a load/store 
interface 
 

Adapted from Katelin Bailey’s description at INFLOW’13  
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ACID maintained in different manners 
• ACI in an integrated mechanism: e.g., transactional memory 
• Separate A and D from ACID:  

e.g., failure-atomic msync() [Park+ Eurosys’13] 

Our design 
• Hardware maintains A and D 
• Hardware preserves the consistency semantics defined by software  

- Ordering of writes defined by software 
• Software maintains isolation with concurrency control mechanisms 

 Hardware portion of persistent memory design      
effectively maintains multiversioning and preserves ordering 
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buffers, or newly 
created versions 

• Ordering  Restrict the ordering of writes arriving at memory   
     - Software employs cache flush, memory fence, or uncacheable writes  

   [Volos+ ASPLOS’11, Venkataraman+ FAST’11 ] 
- Software sets epoch barriers, hardware manages epoch-based writes   
   [Condit+ SOSP’09, Coburn+ ASPLOS’11] 
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10 

Native 

Persistent Memory 
• Updates do not overwrite original data 
• Restrict the ordering of writes crossing the memory bus 

Benchmarks: inserts/deletes to B+ tree, hash table, 
red-black tree, array, and scalable large graph 
 

• Updates directly overwrite original data 
• Writes reordered by cache writebacks/memory controllers 

Ideal Performance 

(Use NVRAM, but no persistence) 
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• Explicitly duplicate data in memory 
- By executing logging or copy-on-write instructions 

• Two memory stores for one data update 
- Increase memory activities  
- Saturate memory bandwidth 

• In-order updates  
- Forced all the way down to main memory  
-  Cancel out the effect of processor’s reordering  
   optimizations Persistence 

Performance 



15 

Overheads  
of multiversioning and ordering by software methods 

How to optimize  
persistent memory design with hardware support 



What Can be Leveraged From Hardware 

16 

                                  
                        

          
 

                         
                
 



What Can be Leveraged From Hardware 

16 

Software’s view of memory system 

 

Page belonging to process 

Page not belonging to process 

0x00000000 

0x00ffffff 

… 

- A flat address space 
 
 

- Pages 
 
 

                         
                
 



What Can be Leveraged From Hardware 

16 

Software’s view of memory system 

 

Page belonging to process 

Page not belonging to process 

Hardware’s view of memory system 
 

0x00000000 

0x00ffffff 

… 

Core Core … 

- A flat address space 
 
 

- Pages 
 
 

- Not flat, a hierarchy 
 
 

- Cache lines 
 
 



What Can be Leveraged From Hardware 

16 

Software’s view of memory system 

 

Page belonging to process 

Page not belonging to process 

Hardware’s view of memory system 
 

… 

Last-level Cache 
(LLC) 

0x00000000 

0x00ffffff 

… 

L1 Cache L1 Cache 

L2 Cache 

Core Core … 

- A flat address space 
 
 

- Pages 
 
 

- Not flat, a hierarchy 
 
 

- Cache lines 
 
 

Transparent 
to Software 



What Can be Leveraged From Hardware 

16 

Software’s view of memory system 

 

Page belonging to process 

Page not belonging to process 

Hardware’s view of memory system 
 

Main Memory 

… 

Last-level Cache 
(LLC) 

0x00000000 

0x00ffffff 

… 

L1 Cache L1 Cache 

L2 Cache 

Core Core … 

- A flat address space 
 
 

- Pages 
 
 

- Not flat, a hierarchy 
 
 

- Cache lines 
 
 

Transparent 
to Software 



Multiversioning: 
Leveraging Caching for In-place Updates 

                                   

17 

                                   
                                             

                
                                             

                              
                          
                                     
                                    



Multiversioning: 
Leveraging Caching for In-place Updates 

• How does a write-back cache work? 
 

17 

                                   
                                             

                
                                             

                              
                          
                                     
                                    



Multiversioning: 
Leveraging Caching for In-place Updates 

• How does a write-back cache work? 
 

17 

                                   
                                             

                
                                             

- A processor writes a value 
- Write to L1 cache only 
- Old values remain in lower levels 
- Until the new value gets evicted 

 



Multiversioning: 
Leveraging Caching for In-place Updates 

• How does a write-back cache work? 
 

17 

• A multiversioned system by nature 
                                             

                
                                             

- A processor writes a value 
- Write to L1 cache only 
- Old values remain in lower levels 
- Until the new value gets evicted 

 



Multiversioning: 
Leveraging Caching for In-place Updates 

• How does a write-back cache work? 
 

17 

NVRAM Memory 

A Multiversioned Persistent 
Memory Hierarchy 

NVRAM LLC 

• A multiversioned system by nature 
                                             

                
                                             

- A processor writes a value 
- Write to L1 cache only 
- Old values remain in lower levels 
- Until the new value gets evicted 

 



Multiversioning: 
Leveraging Caching for In-place Updates 

• How does a write-back cache work? 
 

17 

NVRAM Memory 
A B C 

A Multiversioned Persistent 
Memory Hierarchy 

NVRAM LLC 

Ver N-1 • A multiversioned system by nature 
                                             

                
                                             

- A processor writes a value 
- Write to L1 cache only 
- Old values remain in lower levels 
- Until the new value gets evicted 

 



Multiversioning: 
Leveraging Caching for In-place Updates 

• How does a write-back cache work? 
 

17 

NVRAM Memory 
A B C 

A Multiversioned Persistent 
Memory Hierarchy 

NVRAM LLC 
A’ B’ Ver N 

Ver N-1 

C’ 

• A multiversioned system by nature 
                                             

                
                                             

- A processor writes a value 
- Write to L1 cache only 
- Old values remain in lower levels 
- Until the new value gets evicted 

 



Multiversioning: 
Leveraging Caching for In-place Updates 

• How does a write-back cache work? 
 

17 

NVRAM Memory 
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Memory Hierarchy 

NVRAM LLC 
A’ B’ Ver N 

Ver N-1 

C’ 

• A multiversioned system by nature 
     - Allow updates to directly overwrite  

  original data 
     - No need for logging or copy-on-write 
 Native  

• Updates overwrite original data 

The Same 
Address 

Ver N 

Ver N-1 

- A processor writes a value 
- Write to L1 cache only 
- Old values remain in lower levels 
- Until the new value gets evicted 
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NVRAM LLC 

NVRAM Memory 

Higher-level Caches 

A’3, B’2, A’1, B’1, A’2 

TA updates {A1, A2, A3} 
TB updates {B1, B2} 

Cache 
Flush Out-of-order 

• Out-of-order writes to NVRAM LLC 
- hardware remembers the committing  
  state of each cache line in NVRAM LLC 

• In-order commits of transactions 
      - Example: TA before TB 

      - TB will not commit until A’2 arrives in  
   NVRAM LLC 

• Commit a transaction 
- Flush higher-level caches -- very fast 
- Change cache line states in NVRAM LLC 
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while( true ) { 
  transaction_begin { // Transaction X 
    read Xa, Xb, Xc;  
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    log(X2) 
    write X2; 
  } transaction_end; 
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Software logging functions  

In-place updates 
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while( true ) { 
  transaction_begin { // Transaction X 
    read Xa, Xb, Xc;  
    do some processing;     
    log(X0); 
    log(X1); 
    write X0, X1; 
    read Xd; 
    do some other processing; 
    log(X2) 
    write X2; 
  } transaction_end; 
} 

Software logging functions  

In-place updates 

while( true ) { 
  persistent{ // Transaction X 
    read Xa, Xb, Xc;  
    do some processing;     
    write X0, X1; 
    read Xd; 
    do some other processing; 
    write X2; 
  } 
} 

In-place updates 

Before 

After 
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Conventional Design 
• Updates do not overwrite 

original data 
• Restrict ordering of writes 

crossing the memory bus 

Leverage hardware support for 
performance optimizations 

Persistence  

Multiversioning, really? 



A Hardware Memory Barrier 

• Why 
- Prevents early eviction of uncommitted  
  transactions 
- Avoid violating atomicity 
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A Hardware Memory Barrier 

• Why 
- Prevents early eviction of uncommitted  
  transactions 
- Avoid violating atomicity 

• How -- Rule of thumb 
- Keep uncommitted transactions  
   in NVRAM LLC 

• Implementation 
- Selective replacement policy in NVRAM LLC 
- Add transactions’ committing information  
  to traditional replacement policies 
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A Hardware Memory Barrier 

• Why 
- Prevents early eviction of uncommitted  
  transactions 
- Avoid violating atomicity 

• How -- Rule of thumb 
- Keep uncommitted transactions  
   in NVRAM LLC 

• Implementation 
- Selective replacement policy in NVRAM LLC 
- Add transactions’ committing information  
  to traditional replacement policies 

• What if 
- NVRAM LLC overflows 
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Addressing NVRAM LLC Overflow 

• Detect overflows by hardware 
- Continuously monitor transactions’  
  forward progress 
- Set time out limit to prevent deadlocks 

• Provide a fall-back path 
(Copy-on-write with the overflowed  
 transactions)  
- Hardware notifies OS by interrupts 
- OS allocates temporary data buffers in  
  NVRAM memory 
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• Detect overflows by hardware 
- Continuously monitor transactions’  
  forward progress 
- Set time out limit to prevent deadlocks 

• Provide a fall-back path 
(Copy-on-write with the overflowed  
 transactions)  
- Hardware notifies OS by interrupts 
- OS allocates temporary data buffers in  
  NVRAM memory 
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Experimental Setup 

• Simulator: McSimA+ [Ahn+, ISPASS’13] (modified) 
• Configuration 

- Eight-core processor, 16 threads 
- Private caches: L1/L2, SRAM, 64KB/256KB per core 
- Shared last-level cache: L3, STT-MRAM, 64MB 
- Main memory: DRAM (2GB) + STT-MRAM (2GB) 

• Benchmarks 
- Perform inserts/deletes to B+ tree, hash table, red-black  
   tree, array, and scalable large graph data structures 
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On average, STT-MRAM L3 cache achieves 91% 
performance of using SRAM based L3 cache 

STT-MRAM L3:    64MB 
SRAM based L3:  16MB No persistence 
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Summary 

• Proposed a hardware-based 
persistent memory design 

• Leverage a multiversioned 
persistent memory hierarchy 
that directly overwrites original 
data 
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Summary 

• Proposed a hardware-based 
persistent memory design 

• Leverage a multiversioned 
persistent memory hierarchy 
that directly overwrites original 
data 

• Close the performance gap 
between persistent memory 
systems and the native system 
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“Kiln” was once used by ancient 
Mesopotamians to bake the clay tablets 
with temporary scripts and turn them into 
permanent records. We name our 
persistent memory design Kiln, because it 
is analogous to persistent memory which 
turns volatile data into permanent records. 

Why Name It “Kiln”? 
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