
Kiln: Closing the Performance
Gap Between Systems With and
Without Persistence Support

MICRO-46, December 11, 2013

Jishen Zhao
Sheng Li
Doe Hyun Yoon
Yuan Xie
Norm Jouppi

Penn State Univ.
HP Labs
IBM Research
Penn State Univ./AMD Research
Google

2

New Design Opportunity with NVRAMs

2

New Design Opportunity with NVRAMs

CPU

DRAM
Memory
Load/store
Not persistent

2

New Design Opportunity with NVRAMs

CPU

DRAM

Disk/Flash

Memory
Load/store
Not persistent

Storage
Fopen, fread, fwrite, …
Persistent

Page faults

2

New Design Opportunity with NVRAMs

CPU

DRAM

Disk/Flash

Memory
Load/store
Not persistent

Storage
Fopen, fread, fwrite, …
Persistent

CPU

DRAM NVRAM

Page faults

STT-MRAM,
PCM, ReRAM,
etc.

2

New Design Opportunity with NVRAMs

CPU

DRAM

Disk/Flash

Memory
Load/store
Not persistent

Storage
Fopen, fread, fwrite, …
Persistent

CPU

DRAM NVRAM

Page faults

Load/store

STT-MRAM,
PCM, ReRAM,
etc.

Persistent

2

New Design Opportunity with NVRAMs

CPU

DRAM

Disk/Flash

Memory
Load/store
Not persistent

Storage
Fopen, fread, fwrite, …
Persistent

CPU

DRAM NVRAM

Page faults

Load/store

STT-MRAM,
PCM, ReRAM,
etc.

Persistent

Persistent memory

2

New Design Opportunity with NVRAMs

CPU

DRAM

Disk/Flash

Memory
Load/store
Not persistent

Storage
Fopen, fread, fwrite, …
Persistent

CPU

DRAM NVRAM

Page faults

Load/store

STT-MRAM,
PCM, ReRAM,
etc.

Persistent

Persistent memory

• Allow in-memory data structures to become permanent immediately

2

New Design Opportunity with NVRAMs

CPU

DRAM

Disk/Flash

Memory
Load/store
Not persistent

Storage
Fopen, fread, fwrite, …
Persistent

CPU

DRAM NVRAM

Page faults

Load/store

STT-MRAM,
PCM, ReRAM,
etc.

Persistent

Persistent memory

• Allow in-memory data structures to become permanent immediately
• Demonstrated 32x speedup compared with using storage devices

[Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11, Venkataraman+ FAST’11]

3

Why Can’t We Use Existing Systems on
Persistent Memory?

Adapted from Katelin Bailey’s description at INFLOW’13

3

Why Can’t We Use Existing Systems on
Persistent Memory?

• Can’t just use an in-memory system – No persistence support
- In-place updates to nonvolatile media may be interrupted without
 completion in the event of power loss or system crashes
- Interrupted writes could leave partially overwritten data or missing
 references

Adapted from Katelin Bailey’s description at INFLOW’13

3

Why Can’t We Use Existing Systems on
Persistent Memory?

• Can’t just use an in-memory system – No persistence support
- In-place updates to nonvolatile media may be interrupted without
 completion in the event of power loss or system crashes
- Interrupted writes could leave partially overwritten data or missing
 references

• Cant’ just use a storage system – Not optimized for memory
- Overhead from database or file system interfaces, which assume and
 are optimized for slow, block-addressable devices
- Not optimized for fast, byte-addressable memory with a load/store
interface

Adapted from Katelin Bailey’s description at INFLOW’13

4

Persistence

Performance

Focus of Our Work

Persistence
(0 or 1)

High
Performance

4

Persistence

Performance

1

Focus of Our Work

Persistence
(0 or 1)

High
Performance

4

Persistence

Performance

1

Focus of Our Work

Persistence
(0 or 1)

High
Performance

4

Persistence

Performance

1

Optimize

Our Design (Kiln)

Focus of Our Work

Persistence
(0 or 1)

High
Performance

How to Support Persistence in a Memory

A database or a file system

5

A B
C

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

5

A B
C

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

ACID properties -- Guarantee transactions are processed reliably

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

Corrupted by a partially
completed transaction!

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

• Consistency: Take data from one consistent state to another

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

• Consistency: Take data from one consistent state to another

• Isolation: Concurrent transactions appears to be one after another

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

• Consistency: Take data from one consistent state to another

• Isolation: Concurrent transactions appears to be one after another

• Durability: Changes to data will remain across system boots

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

• Consistency: Take data from one consistent state to another

• Isolation: Concurrent transactions appears to be one after another

• Durability: Changes to data will remain across system boots

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

Nonvolatility

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

• Consistency: Take data from one consistent state to another

• Isolation: Concurrent transactions appears to be one after another

• Durability: Changes to data will remain across system boots

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

Nonvolatility
Concurrency Control

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

• Consistency: Take data from one consistent state to another

• Isolation: Concurrent transactions appears to be one after another

• Durability: Changes to data will remain across system boots

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

Nonvolatility
Concurrency Control
Ordering of Writes

ACID properties -- Guarantee transactions are processed reliably

• Atomicity: A transaction is “all or nothing”

• Consistency: Take data from one consistent state to another

• Isolation: Concurrent transactions appears to be one after another

• Durability: Changes to data will remain across system boots

How to Support Persistence in a Memory

A’ B’ C’

Transactions: TA, TB, TC

A database or a file system

Write C’1
Read C’2
…
Write C’n

5

A B
C

Can contain multiple write requests

Crash

Nonvolatility
Concurrency Control
Ordering of Writes
Multiversioning

Multiversioning

6

Database or file system

A’ A Persistent

Ver N Ver N-1

• At least two versions

Multiversioning

6

Database or file system

A’ A Persistent

Ver N Ver N-1

• At least two versions
• Update one version at a time

Multiversioning

6

Database or file system

A’ A Persistent

Ver N Ver N-1

• At least two versions
• Update one version at a time
• Leave the other version intact

TA

Multiversioning

6

Database or file system

A’ A Persistent

Ver N Ver N-1

• At least two versions
• Update one version at a time
• Leave the other version intact

Crash

TA

Multiversioning

6

Database or file system

A’ A Persistent

Ver N Ver N-1

• At least two versions
• Update one version at a time
• Leave the other version intact

Crash

TA

Persistence Support of Our Design

7

Persistence Support of Our Design

7

ACID maintained in different manners

Persistence Support of Our Design

7

ACID maintained in different manners
• ACI in an integrated mechanism: e.g., transactional memory

Persistence Support of Our Design

7

ACID maintained in different manners
• ACI in an integrated mechanism: e.g., transactional memory
• Separate A and D from ACID:

e.g., failure-atomic msync() [Park+ Eurosys’13]

Persistence Support of Our Design

7

ACID maintained in different manners
• ACI in an integrated mechanism: e.g., transactional memory
• Separate A and D from ACID:

e.g., failure-atomic msync() [Park+ Eurosys’13]

Our design

Persistence Support of Our Design

7

ACID maintained in different manners
• ACI in an integrated mechanism: e.g., transactional memory
• Separate A and D from ACID:

e.g., failure-atomic msync() [Park+ Eurosys’13]

Our design
• Hardware maintains A and D
• Hardware preserves the consistency semantics defined by software

- Ordering of writes defined by software

Persistence Support of Our Design

7

ACID maintained in different manners
• ACI in an integrated mechanism: e.g., transactional memory
• Separate A and D from ACID:

e.g., failure-atomic msync() [Park+ Eurosys’13]

Our design
• Hardware maintains A and D
• Hardware preserves the consistency semantics defined by software

- Ordering of writes defined by software
• Software maintains isolation with concurrency control mechanisms

Persistence Support of Our Design

7

ACID maintained in different manners
• ACI in an integrated mechanism: e.g., transactional memory
• Separate A and D from ACID:

e.g., failure-atomic msync() [Park+ Eurosys’13]

Our design
• Hardware maintains A and D
• Hardware preserves the consistency semantics defined by software

- Ordering of writes defined by software
• Software maintains isolation with concurrency control mechanisms

 Hardware portion of persistent memory design
effectively maintains multiversioning and preserves ordering

8

Overheads
of multiversioning and ordering by software methods

8

Overheads
of multiversioning and ordering by software methods

How to optimize
persistent memory design with hardware support

Multiversioning and Ordering by Software

NVRAM Memory (Persistent)

9

Processor

Design strategy: take a
storage system mechanism,

optimize its performance

Multiversioning and Ordering by Software

NVRAM Memory (Persistent)

9

Processor

• Multiversioning Updates do not overwrite original data
 - Logging [Volos+ ASPLOS’11, Coburn+ ASPLOS’11]

- Copy-on-write [Condit+ SOSP’09, Venkataraman+ FAST'11]
(Atomic 8-byte writes [Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11])

Design strategy: take a
storage system mechanism,

optimize its performance

Multiversioning and Ordering by Software

NVRAM Memory (Persistent)

A B C

9

Ver N-1

Processor

• Multiversioning Updates do not overwrite original data
 - Logging [Volos+ ASPLOS’11, Coburn+ ASPLOS’11]

- Copy-on-write [Condit+ SOSP’09, Venkataraman+ FAST'11]
(Atomic 8-byte writes [Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11])

Original data

Design strategy: take a
storage system mechanism,

optimize its performance

Multiversioning and Ordering by Software

NVRAM Memory (Persistent)

A’ A B C

9

Ver N Ver N-1

Processor

• Multiversioning Updates do not overwrite original data
 - Logging [Volos+ ASPLOS’11, Coburn+ ASPLOS’11]

- Copy-on-write [Condit+ SOSP’09, Venkataraman+ FAST'11]
(Atomic 8-byte writes [Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11])

Logs, temporary
buffers, or newly
created versions

Original data
B’ C’

Design strategy: take a
storage system mechanism,

optimize its performance

Multiversioning and Ordering by Software

NVRAM Memory (Persistent)

A’ A B C

9

Cache flush,
memory fence,
epoch barriers

Ver N Ver N-1

Processor

• Multiversioning Updates do not overwrite original data
 - Logging [Volos+ ASPLOS’11, Coburn+ ASPLOS’11]

- Copy-on-write [Condit+ SOSP’09, Venkataraman+ FAST'11]
(Atomic 8-byte writes [Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11])

Logs, temporary
buffers, or newly
created versions

• Ordering Restrict the ordering of writes arriving at memory
 - Software employs cache flush, memory fence, or uncacheable writes

 [Volos+ ASPLOS’11, Venkataraman+ FAST’11]
- Software sets epoch barriers, hardware manages epoch-based writes
 [Condit+ SOSP’09, Coburn+ ASPLOS’11]

Original data
B’ C’

Design strategy: take a
storage system mechanism,

optimize its performance

The Cost of Software Maintained Persistence

10

Persistent Memory
• Updates do not overwrite original data
• Restrict the ordering of writes crossing the memory bus

The Cost of Software Maintained Persistence

10

Native

Persistent Memory
• Updates do not overwrite original data
• Restrict the ordering of writes crossing the memory bus

(Use NVRAM, but no persistence)

The Cost of Software Maintained Persistence

10

Native

Persistent Memory
• Updates do not overwrite original data
• Restrict the ordering of writes crossing the memory bus

• Updates directly overwrite original data
• Writes reordered by cache writebacks/memory controllers

(Use NVRAM, but no persistence)

The Cost of Software Maintained Persistence

10

Native

Persistent Memory
• Updates do not overwrite original data
• Restrict the ordering of writes crossing the memory bus

• Updates directly overwrite original data
• Writes reordered by cache writebacks/memory controllers

Ideal Performance

(Use NVRAM, but no persistence)

The Cost of Software Maintained Persistence

10

Native

Persistent Memory
• Updates do not overwrite original data
• Restrict the ordering of writes crossing the memory bus

Benchmarks: inserts/deletes to B+ tree, hash table,
red-black tree, array, and scalable large graph

• Updates directly overwrite original data
• Writes reordered by cache writebacks/memory controllers

Ideal Performance

(Use NVRAM, but no persistence)

0%

20%

40%

60%

80%

100%
Throughput

11

~50%

Native Persistent
Memory

(Undo Logging)

Be
tt

er

The Cost of Software Maintained Persistence

Persistence

Performance

Reasons for the Degradation

12

Persistence

Performance

Reasons for the Degradation

12

• Explicitly duplicate data in memory
- By executing logging or copy-on-write instructions

Persistence

Performance

Reasons for the Degradation

12

• Explicitly duplicate data in memory
- By executing logging or copy-on-write instructions

while(true) {
 transaction_begin { // Transaction X
 read Xa, Xb, Xc;
 do some processing;
 log(X0);
 log(X1);
 write X0, X1;
 read Xd;
 do some other processing;
 log(X2)
 write X2;
 } transaction_end;
}

Software logging functions

Persistence

Performance

Reasons for the Degradation

12

• Explicitly duplicate data in memory
- By executing logging or copy-on-write instructions

while(true) {
 transaction_begin { // Transaction X
 read Xa, Xb, Xc;
 do some processing;
 log(X0);
 log(X1);
 write X0, X1;
 read Xd;
 do some other processing;
 log(X2)
 write X2;
 } transaction_end;
}

Software logging functions

In-place updates
Persistence

Performance

Reasons for the Degradation

13

• Explicitly duplicate data in memory
- By executing logging or copy-on-write instructions

 • Two memory stores for one data update
- Increase memory activities
- Saturate memory bandwidth

Persistence

Performance

Reasons for the Degradation

13

• Explicitly duplicate data in memory
- By executing logging or copy-on-write instructions

 • Two memory stores for one data update
- Increase memory activities
- Saturate memory bandwidth

0
1
2
3
4

Native Persistent
Memory

(Undo Logging)

M
em

or
y

Tr
af

fic

Reads

Writes 120%
Persistence

Performance

Reasons for the Degradation

14

• Explicitly duplicate data in memory
- By executing logging or copy-on-write instructions

• Two memory stores for one data update
- Increase memory activities
- Saturate memory bandwidth

• In-order updates
- Forced all the way down to main memory
- Cancel out the effect of processor’s reordering
 optimizations Persistence

Performance

15

Overheads
of multiversioning and ordering by software methods

How to optimize
persistent memory design with hardware support

What Can be Leveraged From Hardware

16

What Can be Leveraged From Hardware

16

Software’s view of memory system

Page belonging to process

Page not belonging to process

0x00000000

0x00ffffff

…

- A flat address space

- Pages

What Can be Leveraged From Hardware

16

Software’s view of memory system

Page belonging to process

Page not belonging to process

Hardware’s view of memory system

0x00000000

0x00ffffff

…

Core Core …

- A flat address space

- Pages

- Not flat, a hierarchy

- Cache lines

What Can be Leveraged From Hardware

16

Software’s view of memory system

Page belonging to process

Page not belonging to process

Hardware’s view of memory system

…

Last-level Cache
(LLC)

0x00000000

0x00ffffff

…

L1 Cache L1 Cache

L2 Cache

Core Core …

- A flat address space

- Pages

- Not flat, a hierarchy

- Cache lines

Transparent
to Software

What Can be Leveraged From Hardware

16

Software’s view of memory system

Page belonging to process

Page not belonging to process

Hardware’s view of memory system

Main Memory

…

Last-level Cache
(LLC)

0x00000000

0x00ffffff

…

L1 Cache L1 Cache

L2 Cache

Core Core …

- A flat address space

- Pages

- Not flat, a hierarchy

- Cache lines

Transparent
to Software

Multiversioning:
Leveraging Caching for In-place Updates

17

Multiversioning:
Leveraging Caching for In-place Updates

• How does a write-back cache work?

17

Multiversioning:
Leveraging Caching for In-place Updates

• How does a write-back cache work?

17

- A processor writes a value
- Write to L1 cache only
- Old values remain in lower levels
- Until the new value gets evicted

Multiversioning:
Leveraging Caching for In-place Updates

• How does a write-back cache work?

17

• A multiversioned system by nature

- A processor writes a value
- Write to L1 cache only
- Old values remain in lower levels
- Until the new value gets evicted

Multiversioning:
Leveraging Caching for In-place Updates

• How does a write-back cache work?

17

NVRAM Memory

A Multiversioned Persistent
Memory Hierarchy

NVRAM LLC

• A multiversioned system by nature

- A processor writes a value
- Write to L1 cache only
- Old values remain in lower levels
- Until the new value gets evicted

Multiversioning:
Leveraging Caching for In-place Updates

• How does a write-back cache work?

17

NVRAM Memory
A B C

A Multiversioned Persistent
Memory Hierarchy

NVRAM LLC

Ver N-1 • A multiversioned system by nature

- A processor writes a value
- Write to L1 cache only
- Old values remain in lower levels
- Until the new value gets evicted

Multiversioning:
Leveraging Caching for In-place Updates

• How does a write-back cache work?

17

NVRAM Memory
A B C

A Multiversioned Persistent
Memory Hierarchy

NVRAM LLC
A’ B’ Ver N

Ver N-1

C’

• A multiversioned system by nature

- A processor writes a value
- Write to L1 cache only
- Old values remain in lower levels
- Until the new value gets evicted

Multiversioning:
Leveraging Caching for In-place Updates

• How does a write-back cache work?

17

NVRAM Memory
A B C

A Multiversioned Persistent
Memory Hierarchy

NVRAM LLC
A’ B’ Ver N

Ver N-1

C’

• A multiversioned system by nature
 - Allow updates to directly overwrite

 original data
 - No need for logging or copy-on-write
 Native

• Updates overwrite original data

The Same
Address

Ver N

Ver N-1

- A processor writes a value
- Write to L1 cache only
- Old values remain in lower levels
- Until the new value gets evicted

Preserving Write Ordering:
Out-of-order Writes and In-order Commits

18

Preserving Write Ordering:
Out-of-order Writes and In-order Commits

18

• Out-of-order writes to NVRAM LLC
- hardware remembers the committing
 state of each cache line in NVRAM LLC

Preserving Write Ordering:
Out-of-order Writes and In-order Commits

18

• Out-of-order writes to NVRAM LLC
- hardware remembers the committing
 state of each cache line in NVRAM LLC

• In-order commits of transactions

Preserving Write Ordering:
Out-of-order Writes and In-order Commits

18

NVRAM LLC

NVRAM Memory

Higher-level Caches

TA updates {A1, A2, A3}
TB updates {B1, B2}

• Out-of-order writes to NVRAM LLC
- hardware remembers the committing
 state of each cache line in NVRAM LLC

• In-order commits of transactions
 - Example: TA before TB

Preserving Write Ordering:
Out-of-order Writes and In-order Commits

18

NVRAM LLC

NVRAM Memory

Higher-level Caches

A’3, B’2, A’1, B’1, A’2

TA updates {A1, A2, A3}
TB updates {B1, B2}

Out-of-order

• Out-of-order writes to NVRAM LLC
- hardware remembers the committing
 state of each cache line in NVRAM LLC

• In-order commits of transactions
 - Example: TA before TB

 - TB will not commit until A’2 arrives in
 NVRAM LLC

Preserving Write Ordering:
Out-of-order Writes and In-order Commits

18

NVRAM LLC

NVRAM Memory

Higher-level Caches

A’3, B’2, A’1, B’1, A’2

TA updates {A1, A2, A3}
TB updates {B1, B2}

Cache
Flush Out-of-order

• Out-of-order writes to NVRAM LLC
- hardware remembers the committing
 state of each cache line in NVRAM LLC

• In-order commits of transactions
 - Example: TA before TB

 - TB will not commit until A’2 arrives in
 NVRAM LLC

• Commit a transaction
- Flush higher-level caches -- very fast
- Change cache line states in NVRAM LLC

Code Examples
Before and After Using Our Design

19

Code Examples
Before and After Using Our Design

19

while(true) {
 transaction_begin { // Transaction X
 read Xa, Xb, Xc;
 do some processing;
 log(X0);
 log(X1);
 write X0, X1;
 read Xd;
 do some other processing;
 log(X2)
 write X2;
 } transaction_end;
}

Software logging functions

In-place updates

Before

Code Examples
Before and After Using Our Design

19

while(true) {
 transaction_begin { // Transaction X
 read Xa, Xb, Xc;
 do some processing;
 log(X0);
 log(X1);
 write X0, X1;
 read Xd;
 do some other processing;
 log(X2)
 write X2;
 } transaction_end;
}

Software logging functions

In-place updates

while(true) {
 persistent{ // Transaction X
 read Xa, Xb, Xc;
 do some processing;
 write X0, X1;
 read Xd;
 do some other processing;
 write X2;
 }
}

In-place updates

Before

After

20

Native
• Updates directly

overwrite original data
• Reordered memory

requests

20

Native
• Updates directly

overwrite original data
• Reordered memory

requests

Conventional Design
• Updates do not overwrite

original data
• Restrict ordering of writes

crossing the memory bus

Persistence

20

Native
• Updates directly

overwrite original data
• Reordered memory

requests

Our Design
• Updates directly

overwrite original data
• Restrict ordering of

writes arriving at LLC

Conventional Design
• Updates do not overwrite

original data
• Restrict ordering of writes

crossing the memory bus

Leverage hardware support for
performance optimizations

Persistence

20

Native
• Updates directly

overwrite original data
• Reordered memory

requests

Our Design
• Updates directly

overwrite original data
• Restrict ordering of

writes arriving at LLC

Address implementation challenges

Conventional Design
• Updates do not overwrite

original data
• Restrict ordering of writes

crossing the memory bus

Leverage hardware support for
performance optimizations

Persistence

20

Native
• Updates directly

overwrite original data
• Reordered memory

requests

Our Design
• Updates directly

overwrite original data
• Restrict ordering of

writes arriving at LLC

Address implementation challenges

Conventional Design
• Updates do not overwrite

original data
• Restrict ordering of writes

crossing the memory bus

Leverage hardware support for
performance optimizations

Persistence

Multiversioning, really?

A Hardware Memory Barrier

• Why
- Prevents early eviction of uncommitted
 transactions
- Avoid violating atomicity

21

NVRAM Memory
A B C

NVRAM LLC
A’ B’ C’

TA updates {A1, A2, A3}

A Hardware Memory Barrier

• Why
- Prevents early eviction of uncommitted
 transactions
- Avoid violating atomicity

21

NVRAM Memory
A B C

NVRAM LLC
A’ B’ C’

A’1

TA updates {A1, A2, A3}

A Hardware Memory Barrier

• Why
- Prevents early eviction of uncommitted
 transactions
- Avoid violating atomicity

21

NVRAM Memory
A B C

NVRAM LLC
A’ B’ C’

A’1

TA updates {A1, A2, A3}

Crash

A Hardware Memory Barrier

• Why
- Prevents early eviction of uncommitted
 transactions
- Avoid violating atomicity

• How -- Rule of thumb
- Keep uncommitted transactions
 in NVRAM LLC

• Implementation
- Selective replacement policy in NVRAM LLC
- Add transactions’ committing information
 to traditional replacement policies

21

NVRAM Memory
A B C

NVRAM LLC
A’ B’ C’

A’1

TA updates {A1, A2, A3}

Crash

A Hardware Memory Barrier

• Why
- Prevents early eviction of uncommitted
 transactions
- Avoid violating atomicity

• How -- Rule of thumb
- Keep uncommitted transactions
 in NVRAM LLC

• Implementation
- Selective replacement policy in NVRAM LLC
- Add transactions’ committing information
 to traditional replacement policies

• What if
- NVRAM LLC overflows

21

NVRAM Memory
A B C

NVRAM LLC
A’ B’ C’

A’1

TA updates {A1, A2, A3}

Crash

Addressing NVRAM LLC Overflow

• Detect overflows by hardware
- Continuously monitor transactions’
 forward progress
- Set time out limit to prevent deadlocks

• Provide a fall-back path
(Copy-on-write with the overflowed
 transactions)
- Hardware notifies OS by interrupts
- OS allocates temporary data buffers in
 NVRAM memory

22

NVRAM Memory
A B C

NRAM LLC
A’ B’ C’ D’

D

Ver N-1

Ver N

Addressing NVRAM LLC Overflow

• Detect overflows by hardware
- Continuously monitor transactions’
 forward progress
- Set time out limit to prevent deadlocks

• Provide a fall-back path
(Copy-on-write with the overflowed
 transactions)
- Hardware notifies OS by interrupts
- OS allocates temporary data buffers in
 NVRAM memory

22

NVRAM Memory
A B C

NRAM LLC
A’ B’ C’ D’

Overflow

D

Ver N-1

Ver N

Addressing NVRAM LLC Overflow

• Detect overflows by hardware
- Continuously monitor transactions’
 forward progress
- Set time out limit to prevent deadlocks

• Provide a fall-back path
(Copy-on-write with the overflowed
 transactions)
- Hardware notifies OS by interrupts
- OS allocates temporary data buffers in
 NVRAM memory

22

NVRAM Memory
A B C

NRAM LLC
A’ B’ C’ D’

Overflow

D’ D

Ver N-1 Ver N

Experimental Setup

• Simulator: McSimA+ [Ahn+, ISPASS’13] (modified)
• Configuration

- Eight-core processor, 16 threads
- Private caches: L1/L2, SRAM, 64KB/256KB per core
- Shared last-level cache: L3, STT-MRAM, 64MB
- Main memory: DRAM (2GB) + STT-MRAM (2GB)

• Benchmarks
- Perform inserts/deletes to B+ tree, hash table, red-black
 tree, array, and scalable large graph data structures

23

NVRAM

Volatile vs. Nonvolatile LLC

24

Volatile vs. Nonvolatile LLC

24

No persistence

Volatile vs. Nonvolatile LLC

24

STT-MRAM L3: 64MB
SRAM based L3: 16MB No persistence

Volatile vs. Nonvolatile LLC

24

STT-MRAM L3: 64MB
SRAM based L3: 16MB No persistence

Volatile vs. Nonvolatile LLC

24

70%

80%

90%

100%
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads

Bt
re

e

Ha
sh

Ta
bl

e

 R
ea

d-
bl

ac
k

Tr
ee

Gr
ap

h1

Ar
ra

y

Gr
ap

h2
 Th

ro
ug

hp
ut

(S

TT
-M

RA
M

 v
s.

 S
RA

M
)

STT-MRAM L3: 64MB
SRAM based L3: 16MB No persistence

Volatile vs. Nonvolatile LLC

24

70%

80%

90%

100%
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads

Bt
re

e

Ha
sh

Ta
bl

e

 R
ea

d-
bl

ac
k

Tr
ee

Gr
ap

h1

Ar
ra

y

Gr
ap

h2
 Th

ro
ug

hp
ut

(S

TT
-M

RA
M

 v
s.

 S
RA

M
)

On average, STT-MRAM L3 cache achieves 91%
performance of using SRAM based L3 cache

STT-MRAM L3: 64MB
SRAM based L3: 16MB No persistence

System Performance

25

0%

20%

40%

60%

80%

100%

System Performance

25

Th
ro

ug
hp

ut

Goal 100%

Native Our
Design
(Kiln)

Redo
 Log

Undo
Log

0%

20%

40%

60%

80%

100%

System Performance

25

Th
ro

ug
hp

ut

Goal 100%

Native Our
Design
(Kiln)

Redo
 Log

Undo
Log

Undo Log
in NVRAM

LLC

Redo Log
in NVRAM

LLC

 Log updates become persistent once they arrive at the NVRAM LLC

0%

20%

40%

60%

80%

100%

System Performance

25

22%

60%

Th
ro

ug
hp

ut

Goal 100%

Native Our
Design
(Kiln)

Redo
 Log

Undo
Log

Undo Log
in NVRAM

LLC

Redo Log
in NVRAM

LLC

30%
43%

 Log updates become persistent once they arrive at the NVRAM LLC

0%

20%

40%

60%

80%

100%

System Performance

25

91%

22%

60%

Th
ro

ug
hp

ut

Goal 100%

Native Our
Design
(Kiln)

Redo
 Log

Undo
Log

3x

Undo Log
in NVRAM

LLC

Redo Log
in NVRAM

LLC

30%
43%

 Log updates become persistent once they arrive at the NVRAM LLC

0%

20%

40%

60%

80%

100%

System Performance

25

91%

22%

60%

Th
ro

ug
hp

ut

Goal 100%

Native Our
Design
(Kiln)

Redo
 Log

Undo
Log

3x

Undo Log
in NVRAM

LLC

Redo Log
in NVRAM

LLC

30%
43%

 Log updates become persistent once they arrive at the NVRAM LLC
Other results: performance, power, sensitivity studies.

Summary

26

NVRAM
DRAM Replacement
Persistent Memory (New design opportunity)

Persistence

Performance

Summary

• Proposed a hardware-based
persistent memory design

• Leverage a multiversioned
persistent memory hierarchy
that directly overwrites original
data

26

NVRAM
DRAM Replacement
Persistent Memory (New design opportunity)

Persistence

Performance

Summary

• Proposed a hardware-based
persistent memory design

• Leverage a multiversioned
persistent memory hierarchy
that directly overwrites original
data

• Close the performance gap
between persistent memory
systems and the native system

26

NVRAM
DRAM Replacement
Persistent Memory (New design opportunity)

Persistence

Performance

27

“Kiln” was once used by ancient
Mesopotamians to bake the clay tablets
with temporary scripts and turn them into
permanent records. We name our
persistent memory design Kiln, because it
is analogous to persistent memory which
turns volatile data into permanent records.

Why Name It “Kiln”?

Kiln: Closing the Performance Gap
Between Systems With and
Without Persistence Support

MICRO-46, December 11, 2013

Jishen Zhao
Sheng Li
Doe Hyun Yoon
Yuan Xie
Norm Jouppi

Penn State Univ.
HP Labs
IBM Research
Penn State Univ./AMD Research
Google

Thank You!

	Kiln: Closing the Performance Gap Between Systems With and Without Persistence Support
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	How to Support Persistence in a Memory
	Multiversioning
	Multiversioning
	Multiversioning
	Multiversioning
	Multiversioning
	Persistence Support of Our Design
	Persistence Support of Our Design
	Persistence Support of Our Design
	Persistence Support of Our Design
	Persistence Support of Our Design
	Persistence Support of Our Design
	Persistence Support of Our Design
	Persistence Support of Our Design
	幻灯片编号 45
	幻灯片编号 46
	Multiversioning and Ordering by Software
	Multiversioning and Ordering by Software
	Multiversioning and Ordering by Software
	Multiversioning and Ordering by Software
	Multiversioning and Ordering by Software
	The Cost of Software Maintained Persistence
	The Cost of Software Maintained Persistence
	The Cost of Software Maintained Persistence
	The Cost of Software Maintained Persistence
	The Cost of Software Maintained Persistence
	The Cost of Software Maintained Persistence
	Reasons for the Degradation
	Reasons for the Degradation
	Reasons for the Degradation
	Reasons for the Degradation
	Reasons for the Degradation
	Reasons for the Degradation
	Reasons for the Degradation
	幻灯片编号 65
	What Can be Leveraged From Hardware
	What Can be Leveraged From Hardware
	What Can be Leveraged From Hardware
	What Can be Leveraged From Hardware
	What Can be Leveraged From Hardware
	Multiversioning: Leveraging Caching for In-place Updates
	Multiversioning: Leveraging Caching for In-place Updates
	Multiversioning: Leveraging Caching for In-place Updates
	Multiversioning: Leveraging Caching for In-place Updates
	Multiversioning: Leveraging Caching for In-place Updates
	Multiversioning: Leveraging Caching for In-place Updates
	Multiversioning: Leveraging Caching for In-place Updates
	Multiversioning: Leveraging Caching for In-place Updates
	Preserving Write Ordering: Out-of-order Writes and In-order Commits
	Preserving Write Ordering: Out-of-order Writes and In-order Commits
	Preserving Write Ordering: Out-of-order Writes and In-order Commits
	Preserving Write Ordering: Out-of-order Writes and In-order Commits
	Preserving Write Ordering: Out-of-order Writes and In-order Commits
	Preserving Write Ordering: Out-of-order Writes and In-order Commits
	Code Examples Before and After Using Our Design
	Code Examples Before and After Using Our Design
	Code Examples Before and After Using Our Design
	幻灯片编号 88
	幻灯片编号 89
	幻灯片编号 90
	幻灯片编号 91
	幻灯片编号 92
	A Hardware Memory Barrier
	A Hardware Memory Barrier
	A Hardware Memory Barrier
	A Hardware Memory Barrier
	A Hardware Memory Barrier
	Addressing NVRAM LLC Overflow
	Addressing NVRAM LLC Overflow
	Addressing NVRAM LLC Overflow
	Experimental Setup
	Volatile vs. Nonvolatile LLC
	Volatile vs. Nonvolatile LLC
	Volatile vs. Nonvolatile LLC
	Volatile vs. Nonvolatile LLC
	Volatile vs. Nonvolatile LLC
	Volatile vs. Nonvolatile LLC
	System Performance
	System Performance
	System Performance
	System Performance
	System Performance
	System Performance
	Summary
	Summary
	Summary
	幻灯片编号 117
	Kiln: Closing the Performance Gap Between Systems With and Without Persistence Support

