Energy Efficient GPU Transactional Memory via Space-Time Optimizations

Wilson W. L. Fung
wwlfung@ece.ubc.ca

Tor M. Aamodt
aamodt@ece.ubc.ca

University of British Columbia

TM on GPU: Energy Concern

- TM on GPU: Simple Irregular Parallelism on GPUs
 - nBody 5M Bodies
 - Difficulty: Undergrad, PhD
 - Risk: Medium, High
 - TM: Post-Grad, Medium

- Aggregate Control Messages
 - TM Reduces Risk in Software Development:
 - Predictable Dev Time
 - No Deadlocks
 - More Maintainable Code

- 1640s 5.2s
- Key Idea: Use globally synchronous on-chip timers to record when each word in memory is last written.

Warp Level Transaction Management

- Key Idea: Manage Transactions in a Warp as a Whole Entity
 - Enables exploits of Spatial Locality:
 - Scalar Control Messages
 - SIMT Core TX1, TX4
 - CU
 - Aggregated Messages
 - SIMT Core TX1, TX2, TX3, TX4
 - Last Level Cache

- Intra-Warp Conflict Resolution
 - Naive Conflict Resolution
 - O(T^2 x (R+W)^2)
 - 2-Phase Parallel Conflict Resolution
 - Insight: Fixed priority for conflict resolution enables parallel resolution

- Spatial Locality
 - Owner ID < My ID: Abort
 - Owner ID = My ID: Pass
 - Owner ID = NULL: Pass

- Stored in Shared Memory (On-Chip Per-Core Scratchpad)

Temporal Conflict Detection

- Motivation: Skip Value-Based Conflict Detection for Conflict-Free Read-Only Transactions
 - Examples:
 - TX1
 - if (C = 0)
 - B = B + 1;
 - TX2
 - int K;
 - K = X + Y;

- Key Idea: Use globally synchronous on-chip timers to record when each word in memory is last written.

GPGPU-Sim 3.2.1 + GPUWatch

- HT-(H/M/L) – Hash Table Construction
- ATM – Bank Transactions
- BH-(H/L) – Barnes Huts (N-Body)
- CL/CLc – Cloth Simulation
- CC – Maxflow/Mincut Graph
- AP – Data Mining

- Results
 - Energy Usage
 - 2X → 1.3X