Efficient Management of LLCs
in GPUs for 3D Scene
Rendering Workloads

Jayesh Gaur (Intel)
Raghuram Srinivasan (Ohio State)
Sreenivas Subramoney (Intel)
Mainak Chaudhuri (IIT, Kanpur)

Sketch

Talk in one slide

Result highlights
Understanding the potential
Reuses in 3D graphics data
Our policy proposals
Evaluation methodology
Simulation results
Summary

Sketch

> Talk in one slide

» Result highlights

« Understanding the potential
« Reuses in 3D graphics data
« Our policy proposals
 Evaluation methodology
 Simulation results

e Summary

Talk in One Slide

« 3D scene rendering pipeline generates
accesses to different types of data

— Vertex, vertex index, depth, hierarchical depth,
stencil, render targets (same as pixel colors),
and textures for sampling

— GPUs include small render caches for each such
data type and more recently read/write last-level
caches (LLCs) shared by all such data streams

Talk in One Slide

« 3D scene rendering pipeline generates
accesses to different types of data

— Vertex, vertex index, depth, hierarchical depth,
stencil, render targets (same as pixel colors),
and textures for sampling

— GPUs include small render caches for each such
data type and more recently read/write last-level
caches (LLCs) shared by all such data streams

« Our proposal: graphics stream-aware

probabilistic caching (GSPC) for GPU LLC
— Learns inter- and intra-stream reuse probabilities

from a few sample LLC sets and modulates
insertion/promotion in other sets

Result highlights

« Three increasingly better policies coupled
with uncached displayable color data

— Baseline: two-bit DRRIP

— Workloads: 52 DirectX frames selected from
eight game titles and four benchmark
applications using Direct3D 10 and 11 APIs

Result highlights

« Three increasingly better policies coupled
with uncached displayable color data

— Baseline: two-bit DRRIP

— Workloads: 52 DirectX frames selected from
eight game titles and four benchmark
applications using Direct3D 10 and 11 APIs

— LLC miss saving: up to 29.6% and on average
13.1% with an 8 MB 16-way LLC

Result highlights

« Three increasingly better policies coupled
with uncached displayable color data

— Baseline: two-bit DRRIP

— Workloads: 52 DirectX frames selected from
eight game titles and four benchmark
applications using Direct3D 10 and 11 APIs

— LLC miss saving: up to 29.6% and on average
13.1% with an 8 MB 16-way LLC

— Frame rate improvement: up to 18.2% and on
average 8.0%; with increasing LLC capacity, it
gets even better (11.8% with a 16 MB LLC)

Result highlights

« Three increasingly better policies coupled
with uncached displayable color data

— Baseline: two-bit DRRIP

— Workloads: 52 DirectX frames selected from
eight game titles and four benchmark
applications using Direct3D 10 and 11 APIs

— LLC miss saving: up to 29.6% and on average
13.1% with an 8 MB 16-way LLC

— Frame rate improvement: up to 18.2% and on
average 8.0%; with increasing LLC capacity, it
gets even better (11.8% with a 16 MB LLC)

— More important as GPUs get more aggressive

Sketch

 Talk in one slide

 Result highlights

» Understanding the potential
« Reuses in 3D graphics data
« Our policy proposals
 Evaluation methodology

« Simulation results

e Summary

Characterization framework

* Functional LLC model
— 8 MB 16-way 64-byte blocks
— Digests LLC access traces collected from a
detailed timing simulator of a high-end GPU
« Load/Store trace collection

— 52 frames are selected from twelve DirectX
applications that use Direct3D 10 and 11 APIs

 Eight games and four benchmark applications

— All Direct3D APIs are intercepted in each frame
and replayed through the detailed simulator

— All LLC accesses are logged in a trace
— The modeled LLC is non-inclusive/non-exclusive

GPU last-level cache interface

DRAM

GPU last-level cache interface

DRAM

Belady’'s optimal policy projects a 36.6% average saving
in LLC misses compared to two-bit DRRIP

GPU last-level cache interface

Large potential for improving system

bandwidth, power, and performance

Belady’s optimal policy projects a 36.6% average saving
in LLC misses compared to two-bit DRRIP

LLC accesses
« LLC accesses arise due to misses in the GPU
render caches

— For example, a sampler request comes to the
LLC only if the access has missed in all levels of
the texture cache hierarchy of the GPU

« The LLC accesses can be partitioned based

on the source of the request

— Each such partition will be referred to as a 3D
graphics stream

— We consider eight streams: Vertex, HiZ, Z,
render target (RT), texture sampler (TEX),
stencil (STC), displayable color, and the rest
(shader code, constants, etc.)

LLC access traffic
WhICh 3D graphlcs streams are |mportant?

- STC+D|spIay+0thers
[] Texture sampler
[Render targets

—

Fraction of LLC accesses
o = o o =
n (e)] ~J 03] [de]

=
N

= S
- N W

fLo

LLC access traffic
. WhICh 3D graphlcs streams are |mportant?

- STC+D|spIay+0thers
[] Texture sampler
[Render targets

EST 5%

© =
I I

o O
03]
>
wW
Q
o~

o :
8)]
I I

Fraction of LLC accesses
o
-\I

o
o

o
B
-~
N
<
o~

=
w

HIZ 7%

LLC access traffic
. WhICh 3D graphlcs streams are |mportant?

- STC+D|spIay+Others
[] Texture sampler
[Render targets
Hl Z
Hl Hiz
i 4

EST 5%

a

Most LLC accesses touch texture sampler
data, render targets (pixel colors), and depth

RT 40%
Z 10%
HIZ 7%
VTX 4%

LLC read hit rates (8 MB 16-way)

 Texture sampler data LLC hits arise from
— Belady’s optimal: 53.4% render to texture
— Two-bit DRRIP: ~ 22.0% Féuses and intra-

_Single-bit NRU: 18.4% stream texture reuses

LLC read hit rates (8 MB 16-way)

 Texture sampler data | LLC hits arise from
— Belady’s optimal: 53.4% render to texture
— Two-bit DRRIP: ~ 22.0% F€uses and intra-
_Single-bit NRU: 18.4% stream texture reuses
« Render targets
— Belady’s optimal: 59.8% LLC hits arise from
_ Two-bit DRRIP: 50.1% INtra-stream render

_ _ target blend ops
—Single-bit NRU: 41.5%

LLC read hit rates (8 MB 16-way)

« Texture sampler data

— Belady’s optimal:
— Two-bit DRRIP:
— Single-bit NRU:
« Render targets
— Belady’s optimal:
— Two-bit DRRIP:
— Single-bit NRU:
 Depth
— Belady’s optimal:
— Two-bit DRRIP:
— Single-bit NRU:

53.4%
22.0%
18.4%

59.8%
50.1%
41.5%

77.1%
58.0%
58.0%

LLC hits arise from
render to texture
reuses and intra-
stream texture reuses

LLC hits arise from
Intra-stream render
target blend ops

LLC hits arise from
intra-stream depth
reuses

LLC read hit rates (8 MB 16-way)

» Texture sampler data | |G hits arise from

— Belady’s optimal: 53.4% render to texture
— Two-bit DRRIP: 22.0% |reuses and intra-
— Sinale-bit NRU: 18.49% | stream texture reuses

Texture sampler data presents the
largest opportunity for improvement

— Single-bit NRU: .27 target blend ops
« Depth

— Belady’s optimal: 77.1% || |.C hits arise from

— Two-bit DRRIP: 58.0% | intra-stream depth

— Single-bit NRU: 58.0% reuses

Sketch

 Talk in one slide

 Result highlights

« Understanding the potential
» Reuses in 3D graphics data
« Our policy proposals
 Evaluation methodology

« Simulation results

e Summary

LLC reuse study#1: Texture

 LLC hits enjoyed by the texture samplers
come from two sources

e Inter-stream reuses

— A previously created render target block is
consumed by the texture samplers from the LLC

— Arises from a technique called render to texture,
very popular for generating dynamic textures
that need to be updated on a per-frame basis

— Examples include waves, moving clouds, foliage,
fluttering cloth, smoke, fire, and many more

e Intra-stream reuses

— A texture block, previously used by the samplers,
IS reused by the samplers from the LLC

LLC reuse study#1: Texture

« Distinguishing inter-stream reuses from intra-
stream reuses

— Attach one bit with each LLC block; call it RT bit

— All LLC blocks accessed/filled by the render
target stream have the RT bit set

— A texture sampler access that consumes an LLC
block with the RT bit set is identified as an inter-
stream reuse; the RT bit gets reset at this point

— All other texture sampler hits in the LLC are
classified as intra-stream reuses

LLC reuse study#1: Texture

« Out of all LLC hits enjoyed by the texture
sampler accesses in Belady’s optimal policy

— Inter-stream: 55%, Intra-stream: 45% averaged
over 52 frames drawn from twelve DirectX apps

e Inter-stream reuses

— QOut of all LLC blocks with the RT bit set, 51%
are consumed by the texture samplers in
Belady’s optimal policy

— DRRIP and NRU: 16%, 13%

— With Belady’s optimal policy, each of the twelve
applications has at least one-third RT blocks
consumed by the texture samplers

LLC reuse study#1: Texture

 Inter-stream reuse: take-away

— Retaining RT blocks in the LLC is important for
improving texture sampler throughput

— Without driver assistance, it is difficult to identify
the render targets that will be used as textures

— In this work, we consider all render targets to be
potential source for dynamic textures and refine
this set based on render to texture reuse
probability learned at run-time

« Why DRRIP falls so much short of optimal
— Fills 25% of the RT blocks with RRPV three

— Level of protection for RT fills must be decided
from the render to texture reuse probability

LLC reuse study#1: Texture
 Intra-stream reuses
— The goal is to understand how a dead texture

block in the LLC can be identified and evicted
creating room for other live graphics data

— Divide the life of a texture block in the LLC into
epochs demarcated by hits

Sampler access misses LLC and fills a texture
£, \block B OR sampler consumes an RT block B

]

owl| «—

LLC reuse study#1: Texture
 Intra-stream reuses
— The goal is to understand how a dead texture

block in the LLC can be identified and evicted
creating room for other live graphics data

— Divide the life of a texture block in the LLC into
epochs demarcated by hits

Sampler access misses LLC and fills a texture
£, \block B OR sampler consumes an RT block B

]

y

owl| «—

Sampler access hits block B in LLC]

LLC reuse study#1: Texture
 Intra-stream reuses
— The goal is to understand how a dead texture

block in the LLC can be identified and evicted
creating room for other live graphics data

— Divide the life of a texture block in the LLC into
epochs demarcated by hits

Sampler access misses LLC and fills a texture
£, \block B OR sampler consumes an RT block B

]

owl| «—

- Sampler access hits block B in LLC]
2

LLC reuse study#1: Texture
 Intra-stream reuses
— The goal is to understand how a dead texture

block in the LLC can be identified and evicted
creating room for other live graphics data

— Divide the life of a texture block in the LLC into
epochs demarcated by hits

Sampler access misses LLC and fills a texture
£, \block B OR sampler consumes an RT block B

]

owl| «—

Sampler access hits block B in LLC]

LLC reuse study#1: Texture
 Intra-stream reuses
— The goal is to understand how a dead texture

block in the LLC can be identified and evicted
creating room for other live graphics data

— Divide the life of a texture block in the LLC into
epochs demarcated by hits

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

_

LLC evicts block B] Intra-stream reuses

LLC reuse study#1: Texture

e Intra-stream reuses

— All texture blocks residing in the LLC at any point
in time can be partitioned into disjoint sets based
on their epochs

— Clearly, the set E, ., is a subset of the set E, for
all k=0

— Define death ratio of epoch E, as

C(IEl = [Eie1 D/ 1E]
— Define reuse probability of epoch E, as

|Exr 1 |/1El

— Goal of a good policy should be to attach a high
victimization priority to the epochs with low
reuse probability

LLC reuse study#1: Texture

« How many epochs are statistically significant

— When the LLC runs Belady’s optimal policy, 79%
of all texture sampler hits come from the E,
epoch, 15% from the E; epoch, 4% from the E,
epoch, and 2% from the E.; epoch

— It is enough to keep track of the E,, E;, and E.,
epochs for a texture block

« Average reuse probability of these epochs
— E4: 0.19 (at most 0.3 across the twelve apps)

— E;: 0.27 (varies a lot across applications: 0.6 to
nearly zero)

—E,: 0.47 (can be assumed to be mostly live)

LLC reuse study#1: Texture

 Intra-stream reuse: take-away

— Need to track the epoch membership of a
texture block (one among E,, E;, Es>)

— Need to learn the reuse probabilities of the E,
and E, epochs dynamically

— Texture blocks entering the E., epoch will be
assumed to be live unconditionally

« Why DRRIP falls so much short of optimal

— DRRIP fills slightly over a third of the texture
blocks with RRPV three in the LLC

— Need to eliminate more dead texture blocks
— Cannot always promote to RRPV zero on hit

LLC reuse study#2: Depth

« Only intra-stream reuses from the LLC

— Generated depth buffer values are consumed for
further depth tests

— Use the same epoch-based formalism

« Reuse probabilities of the first three epochs
—E,: 0.39, E;: 0.62, E,: 0.74
— Very different from the texture epochs

— Only the E, blocks have low reuse probability
and the E.; blocks are practically live

— We will decide the insertion RRPV of the Z blocks
by estimating the aggregate reuse probability of
all Z blocks and won't consider epochs

LLC reuse: Render target

« Render targets source two types of LLC hits
— Texture sampler hits for render to texture

— Render target blending (also known as texture
blending), where an already created render
target is blended with another render target
being created currently (transparency modeling)

« We do not implement any policy for
improving render target blending

— DRRIP is within 10% of optimal in hit rate

— Some of the lost LLC hits in blending operations
can be recovered by eliminating dead textures

— Our render target hit rates are close to optimal

Sketch

 Talk in one slide

 Result highlights

« Understanding the potential
« Reuses in 3D graphics data
» Our policy proposals
 Evaluation methodology
 Simulation results

e Summary

Graphics stream-aware policies

« Basic framework

— LLC accesses are partitioned into four streams
based on the source: texture samplers (TEX),
render targets (RT), depth (Z), and the rest

— All policies modulate the two-bit RRPV of an LLC
block on insertion and promotion based on reuse
probabilities

A larger RRPV corresponds to a smaller probability of
reuse; the blocks with RRPV three are potential victim
candidates

— The reuse probabilities are estimated by
maintaining fill and hit counters for a few
sampled LLC sets that always use SRRIP [ISCA'10]

Graphics stream-aware policies

 Policy#1: Graphics stream-aware
probabilistic Z and texture caching (GSPZTC)

LLC

|

SRRIP
samples

A

Sets

" Inc. on Z fills
_ to samples

Pt

FILL(Z)

HIT(Z)

il

r

.

Inc. on Z hits
to samples

J

" Inc. on
. TEXHi

RT to TEX and
Is to samples

M FILL(TEX)

HIT(TEX)

Graphics stream-aware policies

« GSPZTC policy for non-sample sets

— The insertion RRPV of a block depends on the
reuse probability of the stream it belongs to

— Zfill: RRPV « (FILL(Z) > t.HIT(2)) ? 3:2

— The reuse probability threshold of 1/(t+1) is
determined empirically; we use t=8

— TEX fill: RRPV «— (FILL(TEX) > t.HIT(TEX)) ? 3:0
— RT fill: RRPV « 0 (highest protection)

— All other fil
— All hits: RR

s: RRPV « 2 (like SRRIP)
bV 0 (like any RRIP)

—Each LLC b
TEX reuse

ock has an RT bit to identify RT to

Graphics stream-aware policies

 Policy#2: GSPZTC with texture sampler
epochs (GSPZTC+TSE)
— Each LLC block has two state bits to keep track

of E,, E;, and E., epochs for texture blocks; the
fourth state serves the functionality of the RT bit

— The FILL(TEX) and HIT(TEX) counters are
replaced by FILL(E,, TEX), FILL(E,, TEX),
HIT(E,, TEX), and HIT(E,, TEX)

— Recall: enough to estimate the reuse
orobabilities of the E, and E; epochs

— Recall: the E., blocks are unconditionally live
(assumed to have high reuse probability)

Graphics stream-aware policies

 Policy#2: GSPZTC with texture sampler
epochs (GSPZTC+TSE)

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

FILL(E,, TEX)++

Graphics stream-aware policies

 Policy#2: GSPZTC with texture sampler
epochs (GSPZTC+TSE)

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

Texture reuse
HIT(E,, TEX)++

FILL(Ey, TEX)++ FILL(E,, TEX)++

Graphics stream-aware policies

 Policy#2: GSPZTC with texture sampler
epochs (GSPZTC+TSE)

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

HIT(Ey, TEX)++
FILL(Ey, TEX)++ FILL(E,, TEX)++

Texture reuse

Texture reuse HIT(E1 TEX)++

Graphics stream-aware policies

« Policy#2: GSPZTC+TSE for non-sample sets

— TEX fill or RT to TEX reuse:
RRPV — (FILL(E,, TEX) > t.HIT(E,, TEX)) ? 3:0

— TEX hit to a block in epoch E,:
RRPV — (FILL(E,, TEX) > t.HIT(E,, TEX)) ? 3:0

— TEX hit to a block in epoch E;: RRPV <« 0

— Other rules are same as GSPZTC

— Observe that both GSPZTC and GSPZTC+TSE
offer the highest protection to the newly filled
render target blocks

« Unnecessarily wastes cache space if the likelihood of
RT to TEX reuse is low

« The next policy addresses this problem

Graphics stream-aware policies
 Policy#3: GSPZTC+TSE + RT insertion policy

— Our final proposal: graphics stream-aware
probabilistic caching (GSPC)

— Incorporates two new counters PROD and CONS
— PROD is incremented on an RT fill to a sample

set; left untouched on RT blending hits
« Approximately tracks the number of unique RT blocks
mapping to the sample sets
— CONS is incremented on RT to TEX reuses in the
sample sets
« One increment for every consumed RT block
 The block enters the E, state after this

— Inter-stream reuse probability is CONS/PROD

Graphics stream-aware policies
 Policy#3: GSPC for non-sample sets
— RT fill: If PROD > 16.CONS then RRPV « 3

[[Low inter-stream reuse probability]]
Else if 16.CONS = PROD > 8.CONS then
RRPV « 2

[[Medium inter-stream reuse probability]]
Else RRPV « 0

[[High inter-stream reuse probability]]
— RT hit (blending): RRPV «— 0

— RT to TEX reuse: as in GSPZTC+TSE
— All other rules are same as GSPZTC+TSE

Graphics stream-aware policies

« Hardware overhead of GSPC on top of two
RRPV bits per LLC block
— Two new state bits per LLC block

— Eight short counters per LLC bank: reuse
probabilities are de-centralized and maintained
per bank to avoid counter hotspots

« HIT(Z), FILL(Z), HIT(E,, TEX), FILL(E,, TEX),
HIT(E,, TEX), FILL(E,, TEX), PROD, CONS: eight bits
each

A seven-bit counter to maintain the interval at which
the above counters are halved: probabilities are
computed on exponentially averaged estimates

— Overall, less than 0.5% of all LLC data bits

Sketch

 Talk in one slide

 Result highlights

« Understanding the potential
« Reuses in 3D graphics data
« Our policy proposals

» Evaluation methodology

« Simulation results

e Summary

Evaluation methodology
 Detailed timing model of a high-end GPU

— Eight thread contexts per shader core

« Two threads can issue one four-wide vector operation
(including MAD) each per cycle

— One texture sampler for every eight shader cores

— Two configs: 64 and 96 shader cores @ 1.6 GHz
« Peak shader throughput: 1.6 TFLOPS and 2.5 TFLOPS
« 512 and 768 thread contexts

— LLC configs: 8 MB and 16 MB 16-way 4 GHz
« 2 MB per bank, non-inclusive/non-exclusive

— DRAM configs: Dual-channel DDR3-1600 15-15-
15 8-way banked

« 52 frames from twelve DirectX applications

Sketch

 Talk in one slide

 Result highlights

« Understanding the potential
« Reuses in 3D graphics data
« Our policy proposals
 Evaluation methodology

» Simulation results

e Summary

Total volume of LLC misses
« Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

GS
GS
GS
GS

DRRIP

N 1.06 NRU
1.00: SHiP-mem
GS-DRRIP

PZTC
PZTC+TSE
PC

PC+UCD

1.00: DRRIP+UCD

>

0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08

Total volume of LLC misses
« Config: 768 shader contexts, 12 texture
samplers, 8 MB LLC DRRIP

1.06 NRU

The best policy proposal saves 13%
LLC misses on average (1.7% to 29.6%)

GSPC

SE

0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08

0C DRRIP+UCD
>

RT to TEX reuse through LLC

« Config: 768 shader contexts, 12 texture
samplers, 8 MB LLC

B 16.3% DRRIP
NRU

SHiP-mem
GS-DRRIP
GSPZTC

C+TSE
GSPC

GSPC+UCD
DRRIP+UCD

10% 15% 20% 25% 30% 35% 40% 45% g

RT to TEX reuse through LLC

« Config: 768 shader contexts, 12 texture
samplers, 8 MB LLC

B 16.3% DRRIP

RT to TEX reuse through LLC offered by
the best proposal is close to optimal (51%)

GSPZTC+TSE
38.7%: GSPC

- : : : : CD=
P 16.6% DRRIP+UCD
10% 15% 20% 25% 30% 35% 40% 45% g

LLC hit rate: Texture sampler
« Config: 768 shader contexts, 12 texture
samplers, 8 MB LLC

B 22.0% DRRIP
NRU

SHiP-mem
GS-DRRIP
GSPZTC

C+TSE
GSPC

DRRIP-+UCD
15% 18% 21% 24% 27% 30% 33% 36% g

LLC hit rate: Texture sampler
« Config: 768 shader contexts, 12 texture
samplers, 8 MB LLC

B 22.0% DRRIP

The best proposal still lags
significantly behind the optimal (53.4%)

GSPZTC+TSE
32.2%: GSPC

CI >
DRRIP+UCD

>

: M 22.2%
15% 18% 21% 24% 27% 30% 33% 36%

LLC hit rate: RT accesses
« Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

DRRIP
NRU
SHiP-mem
GS-DRRIP
GSPZTC

C+TSE
: GSPC
N 58.3% GSPC+UCD
B 50.0% DRRIP+UCD

>

36% 40% 44% 48% 52% 56% 60%

LLC hit rate: RT accesses
« Config: 768 shader contexts, 12 texture
samplers, 8 MB LLC

I 50.1% DRRIP

The best proposal offers nearly
optimal (59.8%) RT hit rate

R 53.1% GSPZTC+TSE
R 57.7% GSPC
58.3% GSPC+UCDE
DRRIP+UCD

>

: : s 50.0%
36% 40% 44% 48% 52% 56% 60%

Frame rate improvement
« Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC, DDR3-1600 15-15-15
DRRIP+UCD

B 0.93 NRU+UCD
.01 GS-DRRIP+UCD

1.08 :GSPC+UCD
0.90 0.94 0.98 1.02 1.06 1.10 1.14

 Config: All identical except 16 MB LLC
DRRIP+UCD
I 0.9

>

NRU+UCD
GS-DRRIP+UCD
1.12 GSPC+UCD

0.90 0.94 0.98 1.02 1.06 1.10 1.14 g

1.04

Frame rate improvement
« Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC, DDR3-1600 15-15-15
DRRIP+UCD
NRU+UCD

Frame rate improvements in GSPC
gracefully scale with LLC capacity

\/1 L

DRRIP+UCD
NRU+UCD

GS-DRRIP+UCD
1.12 GSPC+UCD

0.90 0.94 0.98 1.02 1.06 1.10 1.14 g

Sensitivity to shader thread count
« Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC, DDR3-1600 15-15-15
DRRIP+UCD

B 0.93 NRU+UCD

1.08 :GSPC+UCD
0.90 0.94 0.98 1.02 1.06 1.10 1.14

>

 Config: All identical except 512 shader
contexts —DRRIP+UCD

B 0.95 NRU+UCD
1.06 GSPC+UCD
>

0.90 0.94 0.98 1.02 1.06 1.10 1.14

Sensitivity to shader thread count
« Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC, DDR3-1600 15-15-15
DRRIP+UCD

NRU+UCD

Our proposal gains in importance as
the GPU puts more pressure on the

memory system with more threads

contexts —DRRIP+UCD

B 0.95 NRU+UCD
1.06 GSPC+UCD
>

0.90 0.94 0.98 1.02 1.06 1.10 1.14

Sketch

 Talk in one slide

 Result highlights

« Understanding the potential
« Reuses in 3D graphics data
« Our policy proposals
 Evaluation methodology
 Simulation results
»Summary

Summary
Graphics processor’s LLC is shared by

different data structures used in 3D scene
rendering applications

Render targets (same as pixel colors),
textures, and depth buffer contribute most to
the LLC access traffic

We propose reuse probability-based
algorithms to efficiently manage the GPU LLC

Our best proposal saves 13.1% LLC misses
and speeds up rendering by 8% on average
in @ GPU with an 8 MB LLC

Speedup improves to 11.8% for a 16 MB LLC

Where do we lose against optimal

« Render target to texture reuse

_ Optimal: 51%, GSPC+UCD: 40.4% About 10%
» Render target blending hit rate

_ Optimal: 59.8%, GSPC+UCD: 58.19% About2%
« Texture sampler hit rate

_ Optimal: 53.4%, GSPC+UCD: 33.5% /APout20%
« / hit rate

_ Optimal: 77.1%, GSPC+UCD: 59% /\Pout 18%
 Need a better model for intra-stream texture

and Z reuses that can construct partitions
more useful than reuse count-based epochs

Nothing clears up a case so much
as stating it to another person.

-Sir Arthur Conan Doyle
[Silver Blaze (1892)]

Thank qyou

