
Efficient Management of LLCs
in GPUs for 3D Scene
Rendering Workloads

Jayesh Gaur (Intel)
Raghuram Srinivasan (Ohio State)

Sreenivas Subramoney (Intel)
Mainak Chaudhuri (IIT, Kanpur)

Sketch
• Talk in one slide
• Result highlights
• Understanding the potential
• Reuses in 3D graphics data
• Our policy proposals
• Evaluation methodology
• Simulation results
• Summary

Sketch
Talk in one slide
Result highlights
• Understanding the potential
• Reuses in 3D graphics data
• Our policy proposals
• Evaluation methodology
• Simulation results
• Summary

Talk in One Slide
• 3D scene rendering pipeline generates

accesses to different types of data
– Vertex, vertex index, depth, hierarchical depth,

stencil, render targets (same as pixel colors),
and textures for sampling

– GPUs include small render caches for each such
data type and more recently read/write last-level
caches (LLCs) shared by all such data streams

Talk in One Slide
• 3D scene rendering pipeline generates

accesses to different types of data
– Vertex, vertex index, depth, hierarchical depth,

stencil, render targets (same as pixel colors),
and textures for sampling

– GPUs include small render caches for each such
data type and more recently read/write last-level
caches (LLCs) shared by all such data streams

• Our proposal: graphics stream-aware
probabilistic caching (GSPC) for GPU LLC
– Learns inter- and intra-stream reuse probabilities

from a few sample LLC sets and modulates
insertion/promotion in other sets

Result highlights
• Three increasingly better policies coupled

with uncached displayable color data
– Baseline: two-bit DRRIP
– Workloads: 52 DirectX frames selected from

eight game titles and four benchmark
applications using Direct3D 10 and 11 APIs

Result highlights
• Three increasingly better policies coupled

with uncached displayable color data
– Baseline: two-bit DRRIP
– Workloads: 52 DirectX frames selected from

eight game titles and four benchmark
applications using Direct3D 10 and 11 APIs

– LLC miss saving: up to 29.6% and on average
13.1% with an 8 MB 16-way LLC

Result highlights
• Three increasingly better policies coupled

with uncached displayable color data
– Baseline: two-bit DRRIP
– Workloads: 52 DirectX frames selected from

eight game titles and four benchmark
applications using Direct3D 10 and 11 APIs

– LLC miss saving: up to 29.6% and on average
13.1% with an 8 MB 16-way LLC

– Frame rate improvement: up to 18.2% and on
average 8.0%; with increasing LLC capacity, it
gets even better (11.8% with a 16 MB LLC)

Result highlights
• Three increasingly better policies coupled

with uncached displayable color data
– Baseline: two-bit DRRIP
– Workloads: 52 DirectX frames selected from

eight game titles and four benchmark
applications using Direct3D 10 and 11 APIs

– LLC miss saving: up to 29.6% and on average
13.1% with an 8 MB 16-way LLC

– Frame rate improvement: up to 18.2% and on
average 8.0%; with increasing LLC capacity, it
gets even better (11.8% with a 16 MB LLC)

– More important as GPUs get more aggressive

Sketch
• Talk in one slide
• Result highlights
Understanding the potential
• Reuses in 3D graphics data
• Our policy proposals
• Evaluation methodology
• Simulation results
• Summary

Characterization framework
• Functional LLC model

– 8 MB 16-way 64-byte blocks
– Digests LLC access traces collected from a

detailed timing simulator of a high-end GPU

• Load/Store trace collection
– 52 frames are selected from twelve DirectX

applications that use Direct3D 10 and 11 APIs
• Eight games and four benchmark applications

– All Direct3D APIs are intercepted in each frame
and replayed through the detailed simulator

– All LLC accesses are logged in a trace
– The modeled LLC is non-inclusive/non-exclusive

GPU last-level cache interface

R
E

N
D

E
R

IN
G

P

IP
E

L
IN

E

VTX

VTX
IDX

HIZ

Z

TEX

RT/
CLR

STC

GPU
LLC

D
R

A
M

GPU last-level cache interface

R
E

N
D

E
R

IN
G

P

IP
E

L
IN

E

VTX

VTX
IDX

HIZ

Z

TEX

RT/
CLR

STC

GPU
LLC

D
R

A
M

Belady’s optimal policy projects a 36.6% average saving
in LLC misses compared to two-bit DRRIP

GPU last-level cache interface

R
E

N
D

E
R

IN
G

P

IP
E

L
IN

E

VTX

VTX
IDX

HIZ

Z

TEX

RT/
CLR

STC

GPU
LLC

D
R

A
M

Belady’s optimal policy projects a 36.6% average saving
in LLC misses compared to two-bit DRRIP

Large potential for improving system
bandwidth, power, and performance

LLC accesses
• LLC accesses arise due to misses in the GPU

render caches
– For example, a sampler request comes to the

LLC only if the access has missed in all levels of
the texture cache hierarchy of the GPU

• The LLC accesses can be partitioned based
on the source of the request
– Each such partition will be referred to as a 3D

graphics stream
– We consider eight streams: Vertex, HiZ, Z,

render target (RT), texture sampler (TEX),
stencil (STC), displayable color, and the rest
(shader code, constants, etc.)

LLC access traffic
• Which 3D graphics streams are important?

TEX 34%

RT 40%

Z 10%

LLC access traffic
• Which 3D graphics streams are important?

TEX 34%

RT 40%

Z 10%

HiZ 7%

VTX 4%

REST 5%

LLC access traffic
• Which 3D graphics streams are important?

TEX 34%

RT 40%

Z 10%

Most LLC accesses touch texture sampler
data, render targets (pixel colors), and depth

HiZ 7%

VTX 4%

REST 5%

LLC read hit rates (8 MB 16-way)
• Texture sampler data

– Belady’s optimal: 53.4%
– Two-bit DRRIP: 22.0%
– Single-bit NRU: 18.4%

LLC hits arise from
render to texture
reuses and intra-
stream texture reuses

LLC read hit rates (8 MB 16-way)
• Texture sampler data

– Belady’s optimal: 53.4%
– Two-bit DRRIP: 22.0%
– Single-bit NRU: 18.4%

• Render targets
– Belady’s optimal: 59.8%
– Two-bit DRRIP: 50.1%
– Single-bit NRU: 41.5%

LLC hits arise from
render to texture
reuses and intra-
stream texture reuses

LLC hits arise from
intra-stream render
target blend ops

LLC read hit rates (8 MB 16-way)
• Texture sampler data

– Belady’s optimal: 53.4%
– Two-bit DRRIP: 22.0%
– Single-bit NRU: 18.4%

• Render targets
– Belady’s optimal: 59.8%
– Two-bit DRRIP: 50.1%
– Single-bit NRU: 41.5%

• Depth
– Belady’s optimal: 77.1%
– Two-bit DRRIP: 58.0%
– Single-bit NRU: 58.0%

LLC hits arise from
render to texture
reuses and intra-
stream texture reuses

LLC hits arise from
intra-stream render
target blend ops

LLC hits arise from
intra-stream depth
reuses

LLC read hit rates (8 MB 16-way)
• Texture sampler data

– Belady’s optimal: 53.4%
– Two-bit DRRIP: 22.0%
– Single-bit NRU: 18.4%

• Render targets
– Belady’s optimal: 59.8%
– Two-bit DRRIP: 50.1%
– Single-bit NRU: 41.5%

• Depth
– Belady’s optimal: 77.1%
– Two-bit DRRIP: 58.0%
– Single-bit NRU: 58.0%

LLC hits arise from
render to texture
reuses and intra-
stream texture reuses

LLC hits arise from
intra-stream render
target blend ops

LLC hits arise from
intra-stream depth
reuses

Texture sampler data presents the
largest opportunity for improvement

Sketch
• Talk in one slide
• Result highlights
• Understanding the potential
Reuses in 3D graphics data
• Our policy proposals
• Evaluation methodology
• Simulation results
• Summary

LLC reuse study#1: Texture
• LLC hits enjoyed by the texture samplers

come from two sources
• Inter-stream reuses

– A previously created render target block is
consumed by the texture samplers from the LLC

– Arises from a technique called render to texture,
very popular for generating dynamic textures
that need to be updated on a per-frame basis

– Examples include waves, moving clouds, foliage,
fluttering cloth, smoke, fire, and many more

• Intra-stream reuses
– A texture block, previously used by the samplers,

is reused by the samplers from the LLC

LLC reuse study#1: Texture
• Distinguishing inter-stream reuses from intra-

stream reuses
– Attach one bit with each LLC block; call it RT bit
– All LLC blocks accessed/filled by the render

target stream have the RT bit set
– A texture sampler access that consumes an LLC

block with the RT bit set is identified as an inter-
stream reuse; the RT bit gets reset at this point

– All other texture sampler hits in the LLC are
classified as intra-stream reuses

LLC reuse study#1: Texture
• Out of all LLC hits enjoyed by the texture

sampler accesses in Belady’s optimal policy
– Inter-stream: 55%, Intra-stream: 45% averaged

over 52 frames drawn from twelve DirectX apps

• Inter-stream reuses
– Out of all LLC blocks with the RT bit set, 51%

are consumed by the texture samplers in
Belady’s optimal policy

– DRRIP and NRU: 16%, 13%
– With Belady’s optimal policy, each of the twelve

applications has at least one-third RT blocks
consumed by the texture samplers

LLC reuse study#1: Texture
• Inter-stream reuse: take-away

– Retaining RT blocks in the LLC is important for
improving texture sampler throughput

– Without driver assistance, it is difficult to identify
the render targets that will be used as textures

– In this work, we consider all render targets to be
potential source for dynamic textures and refine
this set based on render to texture reuse
probability learned at run-time

• Why DRRIP falls so much short of optimal
– Fills 25% of the RT blocks with RRPV three
– Level of protection for RT fills must be decided

from the render to texture reuse probability

LLC reuse study#1: Texture
• Intra-stream reuses

– The goal is to understand how a dead texture
block in the LLC can be identified and evicted
creating room for other live graphics data

– Divide the life of a texture block in the LLC into
epochs demarcated by hits

T
im

e

E0

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

LLC reuse study#1: Texture
• Intra-stream reuses

– The goal is to understand how a dead texture
block in the LLC can be identified and evicted
creating room for other live graphics data

– Divide the life of a texture block in the LLC into
epochs demarcated by hits

T
im

e

E0

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

E1
Sampler access hits block B in LLC

LLC reuse study#1: Texture
• Intra-stream reuses

– The goal is to understand how a dead texture
block in the LLC can be identified and evicted
creating room for other live graphics data

– Divide the life of a texture block in the LLC into
epochs demarcated by hits

T
im

e

E0

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

E1

E2

Sampler access hits block B in LLC

LLC reuse study#1: Texture
• Intra-stream reuses

– The goal is to understand how a dead texture
block in the LLC can be identified and evicted
creating room for other live graphics data

– Divide the life of a texture block in the LLC into
epochs demarcated by hits

T
im

e

E0

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

E1

E2

Sampler access hits block B in LLC

E3

LLC reuse study#1: Texture
• Intra-stream reuses

– The goal is to understand how a dead texture
block in the LLC can be identified and evicted
creating room for other live graphics data

– Divide the life of a texture block in the LLC into
epochs demarcated by hits

T
im

e

E0

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

E1

E2

E3

Sampler access hits block B in LLC

LLC evicts block B Intra-stream reuses

LLC reuse study#1: Texture
• Intra-stream reuses

– All texture blocks residing in the LLC at any point
in time can be partitioned into disjoint sets based
on their epochs

– Clearly, the set Ek+1 is a subset of the set Ek for
all k≥0

– Define death ratio of epoch Ek as
(|Ek| – |Ek+1|)/|Ek|

– Define reuse probability of epoch Ek as
|Ek+1|/|Ek|

– Goal of a good policy should be to attach a high
victimization priority to the epochs with low
reuse probability

LLC reuse study#1: Texture
• How many epochs are statistically significant

– When the LLC runs Belady’s optimal policy, 79%
of all texture sampler hits come from the E0
epoch, 15% from the E1 epoch, 4% from the E2
epoch, and 2% from the E≥3 epoch

– It is enough to keep track of the E0, E1, and E≥2
epochs for a texture block

• Average reuse probability of these epochs
– E0: 0.19 (at most 0.3 across the twelve apps)
– E1: 0.27 (varies a lot across applications: 0.6 to

nearly zero)
– E2: 0.47 (can be assumed to be mostly live)

LLC reuse study#1: Texture
• Intra-stream reuse: take-away

– Need to track the epoch membership of a
texture block (one among E0, E1, E≥2)

– Need to learn the reuse probabilities of the E0
and E1 epochs dynamically

– Texture blocks entering the E≥2 epoch will be
assumed to be live unconditionally

• Why DRRIP falls so much short of optimal
– DRRIP fills slightly over a third of the texture

blocks with RRPV three in the LLC
– Need to eliminate more dead texture blocks
– Cannot always promote to RRPV zero on hit

LLC reuse study#2: Depth
• Only intra-stream reuses from the LLC

– Generated depth buffer values are consumed for
further depth tests

– Use the same epoch-based formalism

• Reuse probabilities of the first three epochs
– E0: 0.39, E1: 0.62, E2: 0.74
– Very different from the texture epochs
– Only the E0 blocks have low reuse probability

and the E≥1 blocks are practically live
– We will decide the insertion RRPV of the Z blocks

by estimating the aggregate reuse probability of
all Z blocks and won’t consider epochs

LLC reuse: Render target
• Render targets source two types of LLC hits

– Texture sampler hits for render to texture
– Render target blending (also known as texture

blending), where an already created render
target is blended with another render target
being created currently (transparency modeling)

• We do not implement any policy for
improving render target blending
– DRRIP is within 10% of optimal in hit rate
– Some of the lost LLC hits in blending operations

can be recovered by eliminating dead textures
– Our render target hit rates are close to optimal

Sketch
• Talk in one slide
• Result highlights
• Understanding the potential
• Reuses in 3D graphics data
Our policy proposals
• Evaluation methodology
• Simulation results
• Summary

Graphics stream-aware policies
• Basic framework

– LLC accesses are partitioned into four streams
based on the source: texture samplers (TEX),
render targets (RT), depth (Z), and the rest

– All policies modulate the two-bit RRPV of an LLC
block on insertion and promotion based on reuse
probabilities

• A larger RRPV corresponds to a smaller probability of
reuse; the blocks with RRPV three are potential victim
candidates

– The reuse probabilities are estimated by
maintaining fill and hit counters for a few
sampled LLC sets that always use SRRIP [ISCA’10]

Graphics stream-aware policies
• Policy#1: Graphics stream-aware

probabilistic Z and texture caching (GSPZTC)

SRRIP
samples

FILL(Z) HIT(Z)

Inc. on Z fills
to samples

Inc. on RT to TEX and
TEX fills to samples

Inc. on Z hits
to samples

FILL(TEX) HIT(TEX)

LLC

Sets

Graphics stream-aware policies
• GSPZTC policy for non-sample sets

– The insertion RRPV of a block depends on the
reuse probability of the stream it belongs to

– Z fill: RRPV ← (FILL(Z) > t.HIT(Z)) ? 3:2
– The reuse probability threshold of 1/(t+1) is

determined empirically; we use t=8
– TEX fill: RRPV ← (FILL(TEX) > t.HIT(TEX)) ? 3:0
– RT fill: RRPV ← 0 (highest protection)
– All other fills: RRPV ← 2 (like SRRIP)
– All hits: RRPV ← 0 (like any RRIP)
– Each LLC block has an RT bit to identify RT to

TEX reuse

Graphics stream-aware policies
• Policy#2: GSPZTC with texture sampler

epochs (GSPZTC+TSE)
– Each LLC block has two state bits to keep track

of E0, E1, and E≥2 epochs for texture blocks; the
fourth state serves the functionality of the RT bit

– The FILL(TEX) and HIT(TEX) counters are
replaced by FILL(E0, TEX), FILL(E1, TEX),
HIT(E0, TEX), and HIT(E1, TEX)

– Recall: enough to estimate the reuse
probabilities of the E0 and E1 epochs

– Recall: the E≥2 blocks are unconditionally live
(assumed to have high reuse probability)

Graphics stream-aware policies

• Policy#2: GSPZTC with texture sampler
epochs (GSPZTC+TSE)

E0

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

FILL(E0, TEX)++

Graphics stream-aware policies

• Policy#2: GSPZTC with texture sampler
epochs (GSPZTC+TSE)

E0 E1

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

Texture reuse

FILL(E0, TEX)++

HIT(E0, TEX)++
FILL(E1, TEX)++

Graphics stream-aware policies

• Policy#2: GSPZTC with texture sampler
epochs (GSPZTC+TSE)

E0 E1

E≥2

Sampler access misses LLC and fills a texture
block B OR sampler consumes an RT block B

Texture reuse

Texture reuse
Texture reuse

FILL(E0, TEX)++

HIT(E0, TEX)++
FILL(E1, TEX)++

HIT(E1, TEX)++

Graphics stream-aware policies
• Policy#2: GSPZTC+TSE for non-sample sets

– TEX fill or RT to TEX reuse:
RRPV ← (FILL(E0, TEX) > t.HIT(E0, TEX)) ? 3:0

– TEX hit to a block in epoch E0:
RRPV ← (FILL(E1, TEX) > t.HIT(E1, TEX)) ? 3:0

– TEX hit to a block in epoch E1: RRPV ← 0
– Other rules are same as GSPZTC
– Observe that both GSPZTC and GSPZTC+TSE

offer the highest protection to the newly filled
render target blocks

• Unnecessarily wastes cache space if the likelihood of
RT to TEX reuse is low

• The next policy addresses this problem

Graphics stream-aware policies
• Policy#3: GSPZTC+TSE + RT insertion policy

– Our final proposal: graphics stream-aware
probabilistic caching (GSPC)

– Incorporates two new counters PROD and CONS
– PROD is incremented on an RT fill to a sample

set; left untouched on RT blending hits
• Approximately tracks the number of unique RT blocks

mapping to the sample sets

– CONS is incremented on RT to TEX reuses in the
sample sets

• One increment for every consumed RT block
• The block enters the E0 state after this

– Inter-stream reuse probability is CONS/PROD

Graphics stream-aware policies
• Policy#3: GSPC for non-sample sets

– RT fill: If PROD > 16.CONS then RRPV ← 3
[[Low inter-stream reuse probability]]
Else if 16.CONS ≥ PROD > 8.CONS then

RRPV ← 2
[[Medium inter-stream reuse probability]]
Else RRPV ← 0
[[High inter-stream reuse probability]]

– RT hit (blending): RRPV ← 0
– RT to TEX reuse: as in GSPZTC+TSE
– All other rules are same as GSPZTC+TSE

Graphics stream-aware policies
• Hardware overhead of GSPC on top of two

RRPV bits per LLC block
– Two new state bits per LLC block
– Eight short counters per LLC bank: reuse

probabilities are de-centralized and maintained
per bank to avoid counter hotspots

• HIT(Z), FILL(Z), HIT(E0, TEX), FILL(E0, TEX),
HIT(E1, TEX), FILL(E1, TEX), PROD, CONS: eight bits
each

• A seven-bit counter to maintain the interval at which
the above counters are halved: probabilities are
computed on exponentially averaged estimates

– Overall, less than 0.5% of all LLC data bits

Sketch
• Talk in one slide
• Result highlights
• Understanding the potential
• Reuses in 3D graphics data
• Our policy proposals
Evaluation methodology
• Simulation results
• Summary

Evaluation methodology
• Detailed timing model of a high-end GPU

– Eight thread contexts per shader core
• Two threads can issue one four-wide vector operation

(including MAD) each per cycle

– One texture sampler for every eight shader cores
– Two configs: 64 and 96 shader cores @ 1.6 GHz

• Peak shader throughput: 1.6 TFLOPS and 2.5 TFLOPS
• 512 and 768 thread contexts

– LLC configs: 8 MB and 16 MB 16-way 4 GHz
• 2 MB per bank, non-inclusive/non-exclusive

– DRAM configs: Dual-channel DDR3-1600 15-15-
15 8-way banked

• 52 frames from twelve DirectX applications

Sketch
• Talk in one slide
• Result highlights
• Understanding the potential
• Reuses in 3D graphics data
• Our policy proposals
• Evaluation methodology
Simulation results
• Summary

Total volume of LLC misses
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08

DRRIP
NRU

SHiP-mem

GS-DRRIP

GSPZTC
GSPZTC+TSE
GSPC
GSPC+UCD
DRRIP+UCD

1.06

1.00
0.97

0.95
0.89

0.88
0.87

1.00

Total volume of LLC misses
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08

DRRIP
NRU

SHiP-mem

GS-DRRIP

GSPZTC
GSPZTC+TSE
GSPC
GSPC+UCD
DRRIP+UCD

1.06

1.00
0.97

0.95
0.89

0.88
0.87

1.00

The best policy proposal saves 13%
LLC misses on average (1.7% to 29.6%)

RT to TEX reuse through LLC
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

10% 15% 20% 25% 30% 35% 40% 45%

NRU
SHiP-mem
GS-DRRIP
GSPZTC
GSPZTC+TSE

GSPC
GSPC+UCD
DRRIP+UCD

13.1%
14.6%

20.0%

42.3%
38.7%

40.4%
16.6%

16.3% DRRIP

30.4%

RT to TEX reuse through LLC
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

10% 15% 20% 25% 30% 35% 40% 45%

NRU
SHiP-mem
GS-DRRIP
GSPZTC
GSPZTC+TSE

GSPC
GSPC+UCD
DRRIP+UCD

13.1%
14.6%

20.0%

42.3%
38.7%

40.4%
16.6%

16.3% DRRIP

30.4%

RT to TEX reuse through LLC offered by
the best proposal is close to optimal (51%)

LLC hit rate: Texture sampler
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

15% 18% 21% 24% 27% 30% 33% 36%

NRU
SHiP-mem
GS-DRRIP
GSPZTC
GSPZTC+TSE

GSPC
GSPC+UCD
DRRIP+UCD

18.4%
21.5%

23.8%

33.3%
32.2%

33.5%
22.2%

22.0% DRRIP

27.8%

LLC hit rate: Texture sampler
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

15% 18% 21% 24% 27% 30% 33% 36%

NRU
SHiP-mem
GS-DRRIP
GSPZTC
GSPZTC+TSE

GSPC
GSPC+UCD
DRRIP+UCD

18.4%
21.5%

23.8%

33.3%
32.2%

33.5%
22.2%

22.0% DRRIP

27.8%

The best proposal still lags
significantly behind the optimal (53.4%)

LLC hit rate: RT accesses
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

36% 40% 44% 48% 52% 56% 60%

NRU
SHiP-mem
GS-DRRIP
GSPZTC
GSPZTC+TSE

GSPC
GSPC+UCD

DRRIP+UCD

41.5%
49.3%

51.1%

57.7%
58.3%

50.0%

50.1% DRRIP

50.8%
53.1%

LLC hit rate: RT accesses
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC

36% 40% 44% 48% 52% 56% 60%

NRU
SHiP-mem
GS-DRRIP
GSPZTC
GSPZTC+TSE

GSPC
GSPC+UCD

DRRIP+UCD

41.5%
49.3%

51.1%

57.7%
58.3%

50.0%

50.1% DRRIP

50.8%
53.1%

The best proposal offers nearly
optimal (59.8%) RT hit rate

Frame rate improvement
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC, DDR3-1600 15-15-15

• Config: All identical except 16 MB LLC

0.90 0.94 0.98 1.02 1.06 1.10 1.14

NRU+UCD
GS-DRRIP+UCD
GSPC+UCD

DRRIP+UCD

1.01
0.93

1.08

0.90 0.94 0.98 1.02 1.06 1.10 1.14

NRU+UCD
GS-DRRIP+UCD

GSPC+UCD
1.04

0.97

1.12

DRRIP+UCD

Frame rate improvement
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC, DDR3-1600 15-15-15

• Config: All identical except 16 MB LLC

0.90 0.94 0.98 1.02 1.06 1.10 1.14

NRU+UCD
GS-DRRIP+UCD
GSPC+UCD

DRRIP+UCD

1.01
0.93

1.08

0.90 0.94 0.98 1.02 1.06 1.10 1.14

NRU+UCD
GS-DRRIP+UCD

GSPC+UCD
1.04

0.97

1.12

DRRIP+UCD

Frame rate improvements in GSPC
gracefully scale with LLC capacity

Sensitivity to shader thread count
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC, DDR3-1600 15-15-15

• Config: All identical except 512 shader
contexts

0.90 0.94 0.98 1.02 1.06 1.10 1.14

NRU+UCD

GSPC+UCD

DRRIP+UCD

0.93

1.08

0.90 0.94 0.98 1.02 1.06 1.10 1.14

NRU+UCD

GSPC+UCD

0.95

1.06

DRRIP+UCD

Sensitivity to shader thread count
• Config: 768 shader contexts, 12 texture

samplers, 8 MB LLC, DDR3-1600 15-15-15

• Config: All identical except 512 shader
contexts

0.90 0.94 0.98 1.02 1.06 1.10 1.14

NRU+UCD

GSPC+UCD

DRRIP+UCD

0.93

1.08

0.90 0.94 0.98 1.02 1.06 1.10 1.14

NRU+UCD

GSPC+UCD

0.95

1.06

DRRIP+UCD

Our proposal gains in importance as
the GPU puts more pressure on the
memory system with more threads

Sketch
• Talk in one slide
• Result highlights
• Understanding the potential
• Reuses in 3D graphics data
• Our policy proposals
• Evaluation methodology
• Simulation results
Summary

Summary
• Graphics processor’s LLC is shared by

different data structures used in 3D scene
rendering applications

• Render targets (same as pixel colors),
textures, and depth buffer contribute most to
the LLC access traffic

• We propose reuse probability-based
algorithms to efficiently manage the GPU LLC

• Our best proposal saves 13.1% LLC misses
and speeds up rendering by 8% on average
in a GPU with an 8 MB LLC

• Speedup improves to 11.8% for a 16 MB LLC

Where do we lose against optimal
• Render target to texture reuse

– Optimal: 51%, GSPC+UCD: 40.4%

• Render target blending hit rate
– Optimal: 59.8%, GSPC+UCD: 58.1%

• Texture sampler hit rate
– Optimal: 53.4%, GSPC+UCD: 33.5%

• Z hit rate
– Optimal: 77.1%, GSPC+UCD: 59%

• Need a better model for intra-stream texture
and Z reuses that can construct partitions
more useful than reuse count-based epochs

About 10%

About 2%

About 20%

About 18%

Thank you

Nothing clears up a case so much
as stating it to another person.

-Sir Arthur Conan Doyle
[Silver Blaze (1892)]

