
Efficient Management of Last-level Caches in Graphics
Processors for 3D Scene Rendering Workloads

Jayesh Gaur (Intel), Raghuram Srinivasan (Ohio State University),
Sreenivas Subramoney (Intel), Mainak Chaudhuri (Indian Institute of Technology, Kanpur)

Last-level Cache (LLC) Interface in GPUs Stream-aware Graphics LLC Management

3D scene rendering is implemented in the form of a pipleline in GPUs
Each pipeline stage accesses different types of data e.g., vertices, vertex indices, depth (Z),
hierarchical depth (HiZ), stencil, render targets (or pixel colors), and texture for sampling
GPUs include small render caches for each such data stream
Recent commercial GPUs have incorporated reasonably large LLCs that can be shared by all
these streams enabling far-flung intra-stream reuses and fast inter-stream producer-consumer
sharing (Nvidia’s Fermi, Kepler; AMD’s GCN; Intel’s Sandy Bridge, Ivy Bridge, Haswell)

R
E

N
D

E
R

IN
G

P

IP
E

L
IN

E

VTX

IDX

GPU LLC
RT/

CLR

VTX

TEX

HIZ

STC

Z

D
R

A
M

Belady’s optimal
projects a 36.6%
saving in LLC
misses over
DRRIP for 52
DirectX frames

3D Graphics Streams and Reuses from the LLC

Characterization done on 52 frames selected from eight DirectX games and four DirectX
benchmark applications spanning two versions of DirectX and three different frame resolutions
LLC is 8 MB 16-way non-inclusive/non-exclusive relative to the graphics render caches (no back-
invalidation on LLC eviction)

More than 80% of LLC accesses come from
Z, render target, and texture samplers

How to efficiently
manage the
graphics LLC?

Large LLC hit rate gap between optimal
policy and DRRIP or NRU for Z, RT, TEX

With an optimal LLC policy, 55% of
LLC hits enjoyed by the texture
samplers come from render targets
produced by color ROP writes; DRRIP
and NRU fall significantly short

With an optimal LLC policy, 51% of all
produced render target blocks are
consumed by the texture samplers,
while for DRRIP and NRU, this is only
16% and 13%, respectively

Large volume of potential LLC reuses from
RT production to TEX consumption

Let the life of an LLC block be divided into epochs demarcated by the LLC hits the block enjoys
Define death ratio and reuse probability of epoch Ek as (|Ek|−|Ek+1|)/|Ek| and |Ek+1|/|Ek|, for k ≥ 0
Examine intra-stream reuse behavior of texture sampler and Z streams in terms of epochs
A good LLC policy should victimize blocks from the epochs with low reuse probabilities

With an optimal LLC policy, most
sampler hits come from the E0 texture
partition and almost all hits are covered
by the E0, E1, E2 partitions

While the blocks in the E2 texture
partition are mostly live, the reuse
probabilities of the E0 and E1 texture
epochs need to be learned dynamically

Our proposal modulates the two-bit RRPV of an LLC block on insertion and hits based on the reuse
probability (RPROB) of different graphics streams; always replaces the block with RRPV three
The reuse probabilities are learned from a few sample sets that always execute the SRRIP policy
We describe our proposal as three increasingly better LLC management policies

Policy#1: Graphics Stream-aware Probabilistic Z and Texture caching (GSPZTC)

Z fill: RRPV ← (RPROB(Z) < 1/(t+1)) ? 3 : 2 or equivalently, RRPV ← (t.HIT(Z) < FILL(Z)) ? 3 : 2
The HIT and FILL counters are updated by the sample sets
The threshold t is chosen to be a power of two (specifically, eight) so that no multiplication is needed
TEX fill: RRPV ← (t.HIT(TEX) < FILL(TEX)) ? 3 : 0
RT fill: RRPV ← 0 to offer the highest protection to the render targets anticipating render to texture
Other fills: RRPV ← 2 as in SRRIP
All hits: RRPV ← 0 as in SRRIP

Policy#2: GSPZTC + Texture Sampler Epochs (TSE)

Instead of learning the overall reuse probability of sampler accesses, maintain the reuse
probabilities of the E0 and E1 texture partitions
When a texture block becomes a member of the E0 or E1 partition, its RRPV is updated according to
the reuse probability of the new partition Ek: RRPV ← (t.HIT(TEX, Ek) < FILL(TEX, Ek)) ? 3 : 0
Two state bits per LLC block keep track of which partition (E0, E1, or E≥2) a texture block belongs to;
the fourth state is used to identify a newly produced render target block

Policy#3: Graphics Stream-aware Probabilistic Caching (GSPC)

This policy further decides the render targets’ insertion RRPV based on the render to texture reuse
probability; in GSPZTC and GSPZTC+TSE, all render target blocks are filled with RRPV zero
Let the sample sets update two counters: PROD and CONS based on the number of blocks written
to by the color ROPs (render target creation) and the number of such blocks consumed by the texture
samplers from the LLC
RT fill: if PROD > 16.CONS then RRPV ← 3; else if 16.CONS ≥ PROD > 8.CONS then RRPV ← 2;
else RRPV ← 0
Total hardware storage overhead is less than 0.5% of all LLC data array bits

Simulation Results

GPU clocked at 1.6 GHz, with 768 thread contexts and twelve texture samplers delivering peak
shader throughput of nearly 2.5 TFLOPS and peak texture fill rate of 76.8 GTexels/second
Non-inclusive/non-exclusive LLC clocked at 4 GHz, 16-way set-associative, 8 MB or 16 MB in size
Eight-way banked DDR3-1600 DRAM with 15-15-15 latency

Relative to two-bit DRRIP, the proposed
GSPC policy saves 11.8% LLC misses, on
average in an 8 MB 16-way LLC

GSPC with uncached displayable color
(GSPC+UCD) is the best policy and saves
up to 29.6% and on average 13.1% LLC
misses compared to two-bit DRRIP

On an 8 MB LLC, the GSPC policy
improves frame rate by up to 18.2% and
on average 8% compared to DRRIP

On a 16 MB LLC, the GSPC policy
improves frame rate by up to 27% and on
average 11.8% compared to DRRIP

Normalized LLC Miss Count (8 MB LLC)

Performance on 8 MB and 16 MB LLC

Sensitivity to Thread Count and DRAM Speed

With an 8 MB LLC and 512 thread contexts, the GSPC policy improves performance by 5.9%
on average compared to DRRIP (down from 8% with 768 thread contexts)

With an 8 MB LLC and DDR3-1867 10-10-10 DRAM, the GSPC policy improves performance
by 7.1% compared to DRRIP (down from 8% with DDR3-1600 15-15-15 DRAM)

