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Motivation

* Architectures that continuously execute Atomic Blocks or Chunks (e.g., TCC, BulkSC)
« Chunk: a group of dynamically contiguous instructions executed atomically
 Providing performance and programmability advantages [Hammond 04][Ahn 09]

« Chunk commit is an important operation: making the state of a chunk visible
atomically

 We focus on the designs with lazy detection of conflicts
 Provides higher concurrency in codes with high conflicts
e Parallelizing the commit is challenging

 Requires the consistent conflict resolution decision over all the distributed
directory modules

 Therefore, most current schemes have some sequential steps in the commit
* |n addition, the current lazy conflict resolutions are sub-optimal

 Incur the squash when there is only Write-After-Write (WAW) conflict
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Lifetime of a Chunk

Time
— Grouping Propagation

Execution Commit

« Execution:
. Reads and writes bring lines into the cache
. No written line is made visible to other processors
. Execution ends when the last instruction of the chunk completes
« Commit: make the chunk state visible atomically
. Grouping: set the relative order of any two conflicting chunks
. Grabbing the directory: locking the local memory lines and detecting the conflicts
. After a commit grabs all the relevant directories, it is guaranteed to commit successfully
. Propagation: making the stores in a chunk visible to the rest of the system
. Involving sending invalidations and updating directory states
. Atomicity is ensured since the relevant cache lines are logically locked by signatures during the process
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Inefficiency 1: Sequential Grouping
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Inefficiency 2: Squash on WAW-Only
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Contribution: BulkCommit

e BulkCommit: commit protocol with parallel grouping and squash-free

serialization of WAW-only conflict
* IntelliSquash: no squash on WAW
* Insight: using L1 cache as the “store buffer” for the chunk

* IntelliCommit: parallel grouping without broadcast

* Insight: using preemption mechanism to ensure the consistent order

of two conflicting chunks

* BulkCommit tries to achieve the optimal commit protocol design
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Outline

 Motivation
e IntelliSquash
e IntelliCommit

e Evaluation
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IntelliSquash: Insight

« Challenge: the speculative data produced by a chunk cannot be lost when the chunk is ready to
commit

« Solution: use the L1 cache as the “store buffer” for a chunk
. Similar to the store buffer in the conventional system
. On receiving an invalidation, the speculative dirty words of a line are preserved
. Absent bit: it is set when
. The line is not presented
. The line contains some speculative words

. Per-word dirty bit (hot shown)

line(m)

A -l

spVd

Dir State
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IntelliSquash: Merge Operation

* Performed when the whole line with | 7},6 dirty word is merged with

Absent bit set is brought to the cach the non-speculative line

* Merge the remote non-speculative
cache line with the local speculative
words

* On misses to a word not presented e

e  Oncommit

* Theline is not accesses again

+ Therefore, need to bring the line D" State
to the cache as if there is a miss

* Unset Absent (A) bit
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Outline

 Motivation
* IntelliSquash
e IntelliCommit

e Evaluation
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IntelliCommit Protocol

e On chunk commit;:

* Processor sends commit requests
to all the relevant directory modules

Directory module receives commit
request:

* Locks the memory lines

* Responds with commit_ack

Processor counts the number of
commit_ack received

Group formed *  Processor sends commit_confirm
when it receives the expected
number of commit_ack
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Conflicting Chunks Trying to Commit

* Different overlapped directory modules
receive different commit requests in

opposite order
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IntelliCommit: Deadlock Resolution

* Basic idea: enforce a consistent order between two conflicting chunks

* Piggyback a hardware-generated random number with the commit request

* The chunk with higher priority
preempts the chunk with lower
priority

D1 requests permission from P11

apmit_confirm _
to preempt its chunk

* |f P1 has not already formed the
group, it allows it

* After the first group commits, D1
will inform P1
®->@® Conflict chunks
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Why Does IntelliCommit Work?

1. When the directory group of a chunk is already formed, the chunk
cannot be preempted by another chunk

2. All the modules involved in a conflict reach the same decision on
which chunk has the higher priority, locally
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IntelliCommit Implementation

e Extra messages (P=Processor, D=Directory):
e preempt_request (D—P)
e preempt_ack (P—D)
e preempt_nack (P—D)
e preempt_finish (D—P)
« Commit Ack Counter (CAC): #(not received commit_ack)
* Preemption Vector (PV) (N=#P=#D):
 Each processor: N counters of size log(N)
PV[i] at Pj=k

. Pj’s chunk is preempted by Pi’s chunk in k directories

Increase PVI[i]: about to send preempt_ack for Pi’s chunk

« Decrease PVI[i]: received a preempt_finish for Pi’s chunk

When to send commit_confirm?
e (CAC==0)&&(for each i, PV[i]==0)

 Received all commit_ack and the chunk is not preempted by any other chunks in
any directory
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Outline

 Motivation
* IntelliSquash
e IntelliCommit

 Evaluation
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Evaluation

e Cycle accurate NOC simulation with processor and cache model
 Number of cores: 16 and 64
11 SPLASH-2 and 7 PARSEC applications
* One or two outstanding chunks
* Implemented most distributed commit protocols:
« Scalable TCC (ST)
 Scalable Bulk (SB)
* BulkCommit without IntelliSquash (BC-SQ)
« BulkCommit (BC)

AN group
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SPLASH-2 Performance
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* BulkCommit reduces both squash and commit time
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PARSEC Performance
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Figure 7: PARSEC execution time with 64 processors.
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One and Two Outstanding Chunks
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e Using two outstanding chunks is not always useful due to the set restriction

 Two chunks from the same processor cannot write the same cache set
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Also In the paper...

* IntelliSquash: Directory entry states with signature expansion

* IntelliCommit: Directory state diagram of a the committing
chunk

e Discussion of correctness properties

* Discussion of complexity
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Conclusion

* Proposed BulkCommit: commit protocol with parallel grouping and
squash-free serialization of WAW-only conflict

» Key properties:
« Serializing WAW between chunks without squashing
* Exploiting the similarity of a chunk commit and an individual store
« Parallel grouping

e Using preemption mechanisms to order two conflicting chunks
consistently

e Results:
 Eliminate the commit bottleneck with even single outstanding chunk
 Reduce the squash time for some applications

« We believe BulkCommit achieves the optimal design of the chunk
commit protocol
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