
University
of Illinois http://iacoma.cs.uiuc.edu/

BulkCommit: Scalable and Fast
Commit of Atomic Blocks in a Lazy

Multiprocessor Environment

Xuehai Qian, Benjamin Sahelices
Josep Torrellas, Depei Qian

University of Illinois

Wednesday, December 18, 13

http://iacoma.cs.uiuc.edu
http://iacoma.cs.uiuc.edu

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Motivation

2

• Architectures that continuously execute Atomic Blocks or Chunks (e.g., TCC, BulkSC)

• Chunk: a group of dynamically contiguous instructions executed atomically

• Providing performance and programmability advantages [Hammond 04][Ahn 09]

• Chunk commit is an important operation: making the state of a chunk visible
atomically

• We focus on the designs with lazy detection of conflicts

• Provides higher concurrency in codes with high conflicts

• Parallelizing the commit is challenging

• Requires the consistent conflict resolution decision over all the distributed
directory modules

• Therefore, most current schemes have some sequential steps in the commit

• In addition, the current lazy conflict resolutions are sub-optimal

• Incur the squash when there is only Write-After-Write (WAW) conflict

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Lifetime of a Chunk

3

Time

Execution Commit

Grouping Propagation

• Execution:

• Reads and writes bring lines into the cache

• No written line is made visible to other processors

• Execution ends when the last instruction of the chunk completes

• Commit: make the chunk state visible atomically

• Grouping: set the relative order of any two conflicting chunks

• Grabbing the directory: locking the local memory lines and detecting the conflicts

• After a commit grabs all the relevant directories, it is guaranteed to commit successfully

• Propagation: making the stores in a chunk visible to the rest of the system

• Involving sending invalidations and updating directory states

• Atomicity is ensured since the relevant cache lines are logically locked by signatures during the process

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Inefficiency 1: Sequential Grouping

4

Time

Execution Commit

Grouping Propagation

Grouping
Fine-grained

Conflict
Detection

Broadcast?

Scalable TCC
[Chafi 07]

Parallel No Yes

SRC [Pugsley 08] Sequential No No

Scalable Bulk
[Qian 10]

Sequential Yes No

？？？ Parallel Yes No

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

x: S in P0&P1x: D in P1

Inefficiency 2: Squash on WAW-Only

5

Time

Execution Commit

Grouping Propagation

P0 P1

wr x wr x store buffer

Dir

wr x wr x Chunks
C0 C1

C1 Squashed/
Re-execx:S x:S L1 cachex:I

x: D in P0

x:I x:D

wr x

wr x

wr x

wr x

Conventional System Chunk-based System

x:D

Serialize WAW
without re-execution

Serialize WAW-only
conflict with squash

??

x:I

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Contribution: BulkCommit

6

• BulkCommit: commit protocol with parallel grouping and squash-free
serialization of WAW-only conflict

• IntelliSquash: no squash on WAW

• Insight: using L1 cache as the “store buffer” for the chunk

• IntelliCommit: parallel grouping without broadcast

• Insight: using preemption mechanism to ensure the consistent order
of two conflicting chunks

• BulkCommit tries to achieve the optimal commit protocol design

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Outline

7

•Motivation

• IntelliSquash
• IntelliCommit
• Evaluation

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

IntelliSquash: Insight

8

• Challenge: the speculative data produced by a chunk cannot be lost when the chunk is ready to
commit

• Solution: use the L1 cache as the “store buffer” for a chunk

• Similar to the store buffer in the conventional system

• On receiving an invalidation, the speculative dirty words of a line are preserved

• Absent bit: it is set when

• The line is not presented

• The line contains some speculative words

• Per-word dirty bit (not shown)

v
line(m)

P0

P1

m: S in P0&P1

commit

m: D in P1

d
1

V
1

sp
1

v v
d
1

V
1

sp
1

Dir State

v v110

000 v
line(m)

P0

P1

m: S in P0&P1

commit

m: D in P1

d
1

V
1

sp
1

v v
d
1

V
1

sp
1

Dir State

v v110

v1110
A

0
A

1

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

IntelliSquash: Merge Operation

9

• Performed when the whole line with
Absent bit set is brought to the cache

• Merge the remote non-speculative
cache line with the local speculative
words

• On misses to a word not presented

• On commit

• The line is not accesses again

• Therefore, need to bring the line
to the cache as if there is a miss

• Unset Absent (A) bit

v
line(m)

P0

P1

m: S in P0&P1

read

m: D in P1

d
1

V
1

sp
1

v v
d
1

V
1

sp
1

Dir State

v v110

v’1110
A

0
A

1

0

0

m: S in P1&P1

The dirty word is merged with
the non-speculative line

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Outline

10

•Motivation
• IntelliSquash

• IntelliCommit
• Evaluation

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

IntelliCommit Protocol

11

• On chunk commit:

• Processor sends commit requests
to all the relevant directory modules

• Directory module receives commit
request:

• Locks the memory lines

• Responds with commit_ack

• Processor counts the number of
commit_ack received

• Processor sends commit_confirm
when it receives the expected
number of commit_ack

D0 D1 D2 D3

P

commit requestscommit_ack

4123

commit_confirm

Group formed

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Conflicting Chunks Trying to Commit

12

• Different overlapped directory modules
receive different commit requests in
opposite order

• Need to avoid deadlock

D0 D1 D2 D3

P0
0 0P1
1 12 2

commit requests commit requests

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

IntelliCommit: Deadlock Resolution

13

• The chunk with higher priority
preempts the chunk with lower
priority

• D1 requests permission from P1
to preempt its chunk

• If P1 has not already formed the
group, it allows it

• After the first group commits, D1
will inform P1

D0 D1 D2 D3

P0

Conflict chunks

2 2P1

commit_ack

3
commit_confirm

• Basic idea: enforce a consistent order between two conflicting chunks

• Piggyback a hardware-generated random number with the commit request

3
commit_confirm

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Why Does IntelliCommit Work?

14

1. When the directory group of a chunk is already formed, the chunk
cannot be preempted by another chunk

2. All the modules involved in a conflict reach the same decision on
which chunk has the higher priority, locally

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

IntelliCommit Implementation

15

• Extra messages (P=Processor, D=Directory):
• preempt_request (D→P)
• preempt_ack (P→D)
• preempt_nack (P→D)
• preempt_finish (D→P)

• Commit Ack Counter (CAC): #(not received commit_ack)
• Preemption Vector (PV) (N=#P=#D):
• Each processor: N counters of size log(N)
• PV[i] at Pj = k

• Pj’s chunk is preempted by Pi’s chunk in k directories
• Increase PV[i]: about to send preempt_ack for Pi’s chunk

• Decrease PV[i]: received a preempt_finish for Pi’s chunk

• When to send commit_confirm?
• (CAC==0)&&(for each i, PV[i]==0)
• Received all commit_ack and the chunk is not preempted by any other chunks in

any directory

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Outline

16

•Motivation
• IntelliSquash
• IntelliCommit

• Evaluation

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Evaluation

17

• Cycle accurate NOC simulation with processor and cache model
• Number of cores: 16 and 64
• 11 SPLASH-2 and 7 PARSEC applications
• One or two outstanding chunks
• Implemented most distributed commit protocols:
• Scalable TCC (ST)
• Scalable Bulk (SB)
• BulkCommit without IntelliSquash (BC-SQ)
• BulkCommit (BC)

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

SPLASH-2 Performance

18

•BulkCommit reduces both squash and commit time

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

PARSEC Performance

19
Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

One and Two Outstanding Chunks

20

• Using two outstanding chunks is not always useful due to the set restriction
• Two chunks from the same processor cannot write the same cache set

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Also in the paper...

21

• IntelliSquash: Directory entry states with signature expansion
• IntelliCommit: Directory state diagram of a the committing

chunk
• Discussion of correctness properties
• Discussion of complexity

Wednesday, December 18, 13

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks

Conclusion

22

• Proposed BulkCommit: commit protocol with parallel grouping and
squash-free serialization of WAW-only conflict

• Key properties:

• Serializing WAW between chunks without squashing

• Exploiting the similarity of a chunk commit and an individual store

• Parallel grouping

• Using preemption mechanisms to order two conflicting chunks
consistently

• Results:

• Eliminate the commit bottleneck with even single outstanding chunk

• Reduce the squash time for some applications
• We believe BulkCommit achieves the optimal design of the chunk

commit protocol

Wednesday, December 18, 13

University
of Illinois http://iacoma.cs.uiuc.edu/

BulkCommit: Scalable and Fast
Commit of Atomic Blocks in a Lazy

Multiprocessor Environment

Xuehai Qian, Benjamin Sahelices
Josep Torrellas, Depei Qian

University of Illinois

Wednesday, December 18, 13

http://iacoma.cs.uiuc.edu
http://iacoma.cs.uiuc.edu

