BulkCommit: Scalable and Fast
Commit of Atomic Blocks in a Lazy
Multiprocessor Environment

Xuehai Qian, Benjamin Sahelices
Josep Torrellas, Depei Qian
University of lllinois

http://iacoma.cs.uiuc.edu/ I-acoma

~ e group

http://iacoma.cs.uiuc.edu
http://iacoma.cs.uiuc.edu

Motivation

* Architectures that continuously execute Atomic Blocks or Chunks (e.g., TCC, BulkSC)
« Chunk: a group of dynamically contiguous instructions executed atomically
 Providing performance and programmability advantages [Hammond 04][Ahn 09]

« Chunk commit is an important operation: making the state of a chunk visible
atomically

 We focus on the designs with lazy detection of conflicts
 Provides higher concurrency in codes with high conflicts
e Parallelizing the commit is challenging

 Requires the consistent conflict resolution decision over all the distributed
directory modules

 Therefore, most current schemes have some sequential steps in the commit
* |n addition, the current lazy conflict resolutions are sub-optimal

 Incur the squash when there is only Write-After-Write (WAW) conflict

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 2 I-acoma

AN group

Wednesday, December 18, 13

Lifetime of a Chunk

Time
— Grouping Propagation

Execution Commit

« Execution:
. Reads and writes bring lines into the cache
. No written line is made visible to other processors
. Execution ends when the last instruction of the chunk completes
« Commit: make the chunk state visible atomically
. Grouping: set the relative order of any two conflicting chunks
. Grabbing the directory: locking the local memory lines and detecting the conflicts
. After a commit grabs all the relevant directories, it is guaranteed to commit successfully
. Propagation: making the stores in a chunk visible to the rest of the system
. Involving sending invalidations and updating directory states
. Atomicity is ensured since the relevant cache lines are logically locked by signatures during the process

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 3 I-acoma

AN group

Wednesday, December 18, 13

Inefficiency 1: Sequential Grouping

— # Grouping %Propagation

Execution Mo BE MMt
Fine-grained
Groupin , Broadcast?
PIS Conflict
? P Parallel Yes No

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 4 wmg

Wednesday, December 18, 13

Inefficiency 2: Squash on WAW-Only

E— Grouping # ion

Execution

o DinP0 LA

Conventional S Serialize WAW Chunk>

. ithout re- ti
Xuehai Qian BulkCom WIHOUE Terexecttion mit of Atomic Blocks 5 I,\(,:Eemg

conflict with squash

Emhze WAW—only)

Wednesday, December 18, 13

Contribution: BulkCommit

e BulkCommit: commit protocol with parallel grouping and squash-free

serialization of WAW-only conflict
* IntelliSquash: no squash on WAW
* Insight: using L1 cache as the “store buffer” for the chunk

* IntelliCommit: parallel grouping without broadcast

* Insight: using preemption mechanism to ensure the consistent order

of two conflicting chunks

* BulkCommit tries to achieve the optimal commit protocol design

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks ¢

I-acoma

AN group

Wednesday, December 18, 13

Outline

 Motivation
e IntelliSquash
e IntelliCommit

e Evaluation

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 7 wmg

Wednesday, December 18, 13

IntelliSquash: Insight

« Challenge: the speculative data produced by a chunk cannot be lost when the chunk is ready to
commit

« Solution: use the L1 cache as the “store buffer” for a chunk
. Similar to the store buffer in the conventional system
. On receiving an invalidation, the speculative dirty words of a line are preserved
. Absent bit: it is set when
. The line is not presented
. The line contains some speculative words

. Per-word dirty bit (hot shown)

line(m)

A -l

spVd

Dir State

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks g I-acoma

AN group

Wednesday, December 18, 13

IntelliSquash: Merge Operation

* Performed when the whole line with | 7},6 dirty word is merged with

Absent bit set is brought to the cach the non-speculative line

* Merge the remote non-speculative
cache line with the local speculative
words

* On misses to a word not presented e

e Oncommit

* Theline is not accesses again

+ Therefore, need to bring the line D" State
to the cache as if there is a miss

* Unset Absent (A) bit

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks ¢ wmg

Wednesday, December 18, 13

Outline

 Motivation
* IntelliSquash
e IntelliCommit

e Evaluation

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 10 wmg

Wednesday, December 18, 13

IntelliCommit Protocol

e On chunk commit;:

* Processor sends commit requests
to all the relevant directory modules

Directory module receives commit
request:

* Locks the memory lines

* Responds with commit_ack

Processor counts the number of
commit_ack received

Group formed * Processor sends commit_confirm
when it receives the expected
number of commit_ack

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 11 wmg

Wednesday, December 18, 13

Conflicting Chunks Trying to Commit

* Different overlapped directory modules
receive different commit requests in

opposite order

I-acoma

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 12 = >Zgroup

Wednesday, December 18, 13

IntelliCommit: Deadlock Resolution

* Basic idea: enforce a consistent order between two conflicting chunks

* Piggyback a hardware-generated random number with the commit request

* The chunk with higher priority
preempts the chunk with lower
priority

D1 requests permission from P11

apmit_confirm _
to preempt its chunk

* |f P1 has not already formed the
group, it allows it

* After the first group commits, D1
will inform P1
®->@® Conflict chunks

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 13 wmg

Wednesday, December 18, 13

Why Does IntelliCommit Work?

1. When the directory group of a chunk is already formed, the chunk
cannot be preempted by another chunk

2. All the modules involved in a conflict reach the same decision on
which chunk has the higher priority, locally

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 14 wmg

Wednesday, December 18, 13

IntelliCommit Implementation

e Extra messages (P=Processor, D=Directory):
e preempt_request (D—P)
e preempt_ack (P—D)
e preempt_nack (P—D)
e preempt_finish (D—P)
« Commit Ack Counter (CAC): #(not received commit_ack)
* Preemption Vector (PV) (N=#P=#D):
 Each processor: N counters of size log(N)
PV[i] at Pj=k

. Pj’s chunk is preempted by Pi’s chunk in k directories

Increase PVI[i]: about to send preempt_ack for Pi’s chunk

« Decrease PVI[i]: received a preempt_finish for Pi’s chunk

When to send commit_confirm?
e (CAC==0)&&(for each i, PV[i]==0)

 Received all commit_ack and the chunk is not preempted by any other chunks in
any directory

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 15 wmg

Wednesday, December 18, 13

Outline

 Motivation
* IntelliSquash
e IntelliCommit

 Evaluation

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 16 wmg

Wednesday, December 18, 13

Evaluation

e Cycle accurate NOC simulation with processor and cache model
 Number of cores: 16 and 64
11 SPLASH-2 and 7 PARSEC applications
* One or two outstanding chunks
* Implemented most distributed commit protocols:
« Scalable TCC (ST)
 Scalable Bulk (SB)
* BulkCommit without IntelliSquash (BC-SQ)
« BulkCommit (BC)

AN group

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 17 ~acoma

Wednesday, December 18, 13

SPLASH-2 Performance

[\ _ST_Avg
N SB_Avg
= BC-SQ_Avg
.w BC_Avg
=
ﬂ water-spatial ST
W _) water-spatial SB
2 T _water-spatial_BC-SQ
% T water-spatial_ BC
o
O
..n\v [T water-nsquared_ST
w 7] water-nsquared_S8
nw. T _water-nsquared_BC-SQ
N T water-nsquared_BC
€
- [Raytrace_ST
nnuv (N Raytrace_SB
J] Raytrace_BC-SQ
Raytrace_BC .
&
C
NNNNNNNNNN (5 Radix_ST 7
N0 _Radix_SB 31
N Radix_BC-SQ e
1 Radix BC m.
TN Radiosity ST =
NN __Radiosity SB ' M
B Radiosity_BC-SQ O
] Radiosity BC m
d =
| NN Ocean_ST m
NN Ocean_SB m
N Ocean BC-SQ w
[Ocean_BC ﬂ
o
(1 LU_ST H.
7] LU_SB w
T LU_BC-SQ M
] LU_BC O
w2
i FMM_ST \O
19 FMM_SB ot
T FMM_BC-SQ 50
] FMM_BC (L
SH FFT_ST
N FFT_SB
INH _FFT_BC-SQ
| FFT_BC
T Cholesky ST
(T Cholesky SB
[Cholesky BC-SQ
| Cholesky BC
NN Barnes_ST
NN Barnes_SB
Q%s/ﬂw/] Barnes_BC-SQ
(N Barnes_BC
o o o o
(4p] AN —

$20ud 9 awi] uonnoax3y

* BulkCommit reduces both squash and commit time

][Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 18 ',:EES}Q}%

Wednesday, December 18, 13

PARSEC Performance

[J Commit £4 Squash [CacheMiss Bl Useful

.
\

AN\
1
|

ST_Avg
SB_Avg
BC-SQ_Avg
BC_Avg

X264 _ST
X264_SB
X264 _BC-SQ
X264 _BC

Swaptions_ST
Swaptions_SB

Streamcluster ST
Streamcluster SB
Streamcluster BC-SQ
Streamcluster BC

Fluidanimate ST
Fluidanimate SB
Fluidanimate BC-SQ
Fluidanimate BC

Facesim ST
Facesim SB

Facesim BC

Canneal ST
Canneal_SB

Canneal BC-SQ

Canneal_BC

Swaptions_BC-SQ
Swaptions_BC

Facesim BC-SQ

Blackscholes ST
Blackscholes SB
Blackscholes BC-SQ
Blackscholes BC

Figure 7: PARSEC execution time with 64 processors.

;IIT Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 19 wmg

Wednesday, December 18, 13

One and Two Outstanding Chunks

3.0 3.0
wn - : 2] (] Commit] CacheMiss
8 Commit O CacheMiss 8 Squash M Useful
b Squash W Useful >
Q. Q. —
< < u
© 2.0 © 2.0
()])]
= E
— —
5 5
*:'10# ..:10ﬁ -
- - 7
O O
()] Q
> pTe
L L
0 0
(oo B oo I o e I o e IO, N, N B V) W W wWww]ww|wwmowm
0000 oo A O 00O ®m A A
I_‘Iwmml_‘lr\)_‘m I_‘lmmm_‘lm_‘m
O 0O 0 OO0 O O OO0 0 OO0 O O
= =5 | | 0 o OO = = | | b s i R
- - - N C C cC C c c - NN C C c C
2299323232 29932323 32
52 6”5 52256~ 8
- | = = =
-~ X -~ X
w w
(a) SPLASH-2 (b) PARSEC

e Using two outstanding chunks is not always useful due to the set restriction

 Two chunks from the same processor cannot write the same cache set

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 20 wmg

Wednesday, December 18, 13

Also In the paper...

* IntelliSquash: Directory entry states with signature expansion

* IntelliCommit: Directory state diagram of a the committing
chunk

e Discussion of correctness properties

* Discussion of complexity

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 21 wmg

Wednesday, December 18, 13

Conclusion

* Proposed BulkCommit: commit protocol with parallel grouping and
squash-free serialization of WAW-only conflict

» Key properties:
« Serializing WAW between chunks without squashing
* Exploiting the similarity of a chunk commit and an individual store
« Parallel grouping

e Using preemption mechanisms to order two conflicting chunks
consistently

e Results:
 Eliminate the commit bottleneck with even single outstanding chunk
 Reduce the squash time for some applications

« We believe BulkCommit achieves the optimal design of the chunk
commit protocol

Xuehai Qian BulkCommit: Scalable and Fast Commit of Atomic Blocks 22 wmg

Wednesday, December 18, 13

BulkCommit: Scalable and Fast
Commit of Atomic Blocks in a Lazy
Multiprocessor Environment

Xuehai Qian, Benjamin Sahelices
Josep Torrellas, Depei Qian
University of lllinois

http://iacoma.cs.uiuc.edu/ I-acoma

~ e group

http://iacoma.cs.uiuc.edu
http://iacoma.cs.uiuc.edu

