
Berkeley Parlab

1. Motivation!

Xuehai Qian, Josep Torrellas �University of Illinois, Urbana-Champaign)!
Benjamin Sahelices (Universidad de Valladolid), Depei Qian (Beihang University)!

BulkCommit: Scalable and Fast Commit of Atomic Blocks in a Lazy Multiprocessor Environment

! Architectures that continuously execute Atomic Blocks
or Chunks (e.g., TCC, BulkSC [Ceze’07])!
! Chunk: a group of dynamically contiguous

instructions executed atomically!
!  Providing performance and programmability

advantages [Hammond’04][Ahn’09]!
! Chunk commit is an important operation: making

the state of a chunk visible atomically!
!  Lazy detection of conflicts provides higher

concurrency in codes with more conflicts!
!  In a lazy directory-based cache coherent system,

parallelizing the commit is challenging!
! Requires the consistent conflict resolution decision

over all the distributed directory modules!
!  Therefore, the current schemes use sequential

commit operations !
!  In addition, the current lazy conflict resolution is sub-

optimal!
! No squash is required if the conflict is only Write-

After-Write (WAW)

2. Inefficiencies of Current Approaches!
Time

Execution Commit

Grouping Propagation

!  Execution:!
! Reads and writes bring

lines into cache!
! No written line is made

visible to other processors!
! Commit:!

! Grouping: set the relative
order of any two
conflicting chunks!

!  Propagation: making the
stores in a chunk visible
to the rest of the system!

Grouping Fine-grained Conflict Broadcast?

Scalable TCC [Chafi’07] Parallel No Yes

SRC [Pugsley’08] Sequential No No

Scalable Bulk [Qian’10] Sequential Yes No

BulkCommit Parallel Yes No

x: S in P0&P1x: D in P1

P0 P1

wr x wr x store buffer

Dir

x:S x:S L1 cachex:I

x: D in P0

x:I x:D

Conventional System

x:D

Serialize WAW
without re-execution

wr x wr x Chunks
C1

C1 Squashed/
Re-exec

wr x

wr x

wr x

wr x

Chunk-based System

Serialize WAW-only
conflict with squash

Can we
do better?

3. BulkCommit = IntelliSquash + IntelliCommit!

4. Experimental Evaluation! 5. Conclusion!

!  IntelliSquash: no squash on WAW-only conflicts!
! Challenge: the speculative data produced by a chunk

cannot be lost when the chunk is ready to commit!
!  Solution: L1 cache as the “store buffer” for a chunk!

!  Similar to the store buffer in the conventional
system!

! On receiving invalidation, the speculative dirty
words of a line is preserved!

!  Extra hardware cost:!
! Absent bit: it is set when!

!  The line is not presented!
!  The line contains some speculative words!

!  Per-word dirty bit (not shown)!

v
line(m)

P0
P1

m: S in P0&P1

commit

m: D in P1

d
1

V
1

sp
1

v v
d
1

V
1

sp
1

Dir State

v v110

000 v
line(m)

P0
P1

m: S in P0&P1

commit

m: D in P1

d
1

V
1

sp
1

v v
d
1

V
1

sp
1

Dir State

v v110

v1110
A

0
A

1

Traditional Approach IntelliSquash

D0 D1 D2 D3

P 2commit
requests

Parallel
Group Formation

commit_ack

!  IntelliCommit: parallel
grouping!

! On chunk commit:!
!  Processor sends commit

requests in parallel!
! Directory module receives

commit request:!
!  Lock the lines and

responds with
commit_ack!

!  Processor counts
#commit_acks received!

!  Processor sends
commit_confirm in parallel!

! Challenge: resolving conflicts
from two processors !

! ChunkSort: ordering all the
conflicting chunks in the same
order in all relevant directories
by preemption!

!  Messages in preemption:!
!  preeemp_{request,finish} (D"P)!
!  preeemp_{ack,nack} (P"D)!

!  Commit Ack Counter (CAC)!
!  Preemption Vector (PV) (N=#P=#D)!

!  Each processor: N counters of
size log(N)!

!  PV[i] at Pj=k!
!  Pj’s chunk is preempted by

Pi’s chunk in k Dirs!
!  Inc PV[i]: @send preempt_ack!
!  Dec PV[i]: @recv preempt_finish!
!  When to send commit_confirm?!

!  (CAC==0)&&(for each i,
PV[i]==0)!

! Cycle accurate NOC simulation with processor and cache
model!

! Number of cores: 16 and 64!
!  11 SPLASH-2 and 7 PARSEC applications!
! One or two outstanding chunks!
!  Implemented most distributed commit protocols:!

!  Scalable TCC (ST)!
!  Scalable Bulk (SB)!
! BulkCommit without IntelliSquash (BC-SQ)!
! BulkCommit (BC)!

!  Proposed BulkCommit: commit protocol with parallel
grouping and squash-free WAW-only conflict resolution!

! Key properties:!
!  Serializing WAW between chunks without squashing!

!  Exploiting the similarity of the chunk commit and
the individual store!

!  Parallel grouping !
! Using preemption mechanisms to order two

conflicting chunks consistently!
! We hope that BulkCommit achieves the optimal design

point!
!
[Ahn 09] W. Ahn, S. Qi, J.-W. Lee, M. Nicolaides, X. Fang, J. Torrellas, D. Wong and S. Midkiff.
BulkCompiler: High-Performance Sequential Consistency through Coperative Compiler and
Hardware Support, MICRO’09.!
[Ceze 07] L. Ceze, J. M. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of
Sequential Consistency. ISCA’07!
[Chafi 07] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh, W. Baek, C.
Kozyrakis, and K. Olukotun. A Scalable, Non-blocking Approach to Transactional Memory.
HPCA’07. !
[Hammond 04] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M.
K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional Memory Coherence and
Consistency. ISCA’04!
[Pugsley 08] S. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and R. Balasubramonian.
Scalable and Reliable Communication for Hardware Transactional Memory. PACT’08!
[Qian 10] X. Qian, W. Ahn, and J. Torrellas. ScalableBulk: Scalable Cache Coherence for Atomic
Blocks in a Lazy Environment. MICRO’10!
 !

!

