BulkCommit: Scalable and Fast Commit of Atomic Blocks in a Lazy Multiprocessor Environment
I-acoma
group

Xuehai Qian, Josep Torrellas (University of Illinois, Urbana-Champaign)

Benjamin Sahelices (Universidad de Valladolid), Depe1 Qian (Beithang University)

1. Motivation 3. BulkCommit = IntelliSquash + IntelliCommit

» Architectures that continuously execute Atomic Blocks > IntelliSquash: no squash on WAW-only conflicts > IntelliCommit: parallel commit @ 2
or Chunks (e.g., TCC, BulkSC [Ceze’07]) > Challenge: the speculative data produced by a chunk ~ grouping commit ack
» Chunk: a group of dynamically contiguous cannot be lost when the chunk 1s ready to commit » On chunk commit: 7
instructions executed atomically » Solution: L1 cache as the “store buffer” for a chunk » Processor sends commit @ @ @ @
> Providing performance and programmability > Similar to the store buffer in the conventional requests in parallel
advantages [Hammond’04][Ahn’09] system » Directory module receives Group Formation
» Chunk commit is an important operation: making » On receiving invalidation, the speculative dirty commit request: » Messages in Pl‘ﬁ‘/emptiOIli.
the state of a chunk visible atomically words of a line is preserved » Lock the lines and » preeemp_{request.finish} (D=>P)
» Lazy detection of conflicts provides higher » Extra hardware cost: responds with o > preeemp_{ack,nack} (P>D)
: , . C : Commit Ack Counter (CAC)
concurrency in codes with more conflicts » Absent bit: it is set when commit_ack > Preemption Vector (PV) (N=#P=#D)
» In a lazy directory-based cache coherent system, » The line is not presented » Processor counts > Each processor: N counters of
parallelizing the commit 1s challenging » The line contains some speculative words #commit_acks received size log(N)
» Requires the consistent conflict resolution decision » Per-word dirty bit (not shown) » Processor sends > PV[i] at Pj=k
over all the distributed directory modules @ commit_confirm in parallel » Pj’s chunk is preempted by
> Therefore, the current schemes use sequential ine(m » Challenge: resolving conflicts Pi’s chunk m k Dirs
commit operations m@m o from two Processors » Inc PV[1_.:. @send preempt_acl.i
. : L spV d . » Dec PV][i]: @recv preempt_finish
» In addition, the current lazy conflict resolution is sub- ool . R > ChunkSprt: orderm.g all the > When to send commit_confirm?
optimal | . conflicting chunks in the same > (CAC==0)&&(for each i,
» No squash is required if the conflict is only Write- Pir State Dir State order in all relevant directories PV[i]==0)
After-Write (WAW) Traditional Approach IntelliSquash by preemption

2. Inefficiencies of Current Approaches 4. Experimental Evaluation

Time

—> Grouping Propagation » Cycle accurate NOC simulation with processor and cache » Proposed BulkCommit: commit protocol with parallel
- store buffer model grouping and squash-free WAW-only contlict resolution
Execution Commit .
> E . !! » Number of cores: 16 and 64 » Key properties:
xecuuon. : : . g : :
5> Reads and writes bri S0l L cache » 11 SPLASH-2 and 7 PARSEC applications » Serializing WAW between chunks without squashing
cadsS and writes orin : . C a1 . :
lines int h S DI 7 Gerialize W AW » One or two outstanding chunks » Exploiting the similarity of the chunk commit and
INes 1Mto cacne .. : T
> N on Tine | o ComentonalSystem without re- executlon » Implemented most distributed commit protocols: the individual store
O written 11ne 1S made :
e o ofh o » Scalable TCC (ST) » Parallel grouping
V1S101€ 1O OtNEer processors : : :
> C , P l Chunks » Scalable Bulk (SB) » Using preemption mechanisms to order two
ommit: S : iy :
> G , the relati » BulkCommit without IntelliSquash (BC-SQ) conflicting chunks consistently
roupimng. S€ € relative : : : : :
) P fg , Sanwe » BulkCommit (BC) » We hope that BulkCommit achieves the optimal design
oracr o1 any two :
conflicting chunks C1 Squashed/ el 00 - - pornt
g Re-exec Q 0 Commit £ CacheMiss &) % (szngarQr'} E SggpuelMlss
. . . = 45quas seiu = [Ahn 09] W. Ahn, S. Q1, J.-W. Lee, M. Nicolaides, X. Fang, J. Torrellas, D. Wong and S. Midkift.
> PI'OP ag ation: maklng the §' SRR §' | BulllkCompiler'hHigh-P.erformance Seque;ltiil gonsistency through (lfloperative Comp(iiler an.ddk.ff
stores 1n a chunk visible |i&Rs Serialize WAW-only) ﬁ 2.0 ﬁ 2.07 Hardware Support, MICRO’09.
ict wi S S Ceze 07] L. Ceze, J. M. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of
conflict with squash = = [Ceze 07] ; ; ;
to the rest of the system Chunk-based System : Z 'E Sequential Consistency. ISCA’07
21.0- 21.07 [Chafi 07] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh, W. Baek, C.
_ Fine-grained Conflict § § 2 Kozyrakis, and K. Olukotun. A Scalable, Non-blocking Approach to Transactional Memory.
s s HPCA’07.
Scalable TCC [Chati’07] Parallel - 0 - 0- [Hammond 04] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M.
W WD N n W WW®E®O NN K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional Memory Coherence and
SRC [Pugsley’08] Sequential No No g g g % i:: I;; g g g ng g § |; |§ |;) |C:) Consistency. ISC?A’}(IM d d
., : Z T2 22 T T I E 22 [Pugsley 08] S. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and R. Balasubramonian.
senlaslie Bl (e il] | Seepenil M NE ~ 7 g g =2 >3 ~ = g CC:? X253 Scalable and Reliable Communication for Hardware Transactional Memory. PACT’08
BulkCommit el Ve No s % = gr [Qian 10] X. Qian, W. Ahn, and J. Torrellas. ScalableBulk: Scalable Cache Coherence for Atomic
(a) SPLASH-2 (b) PARSEC Blocks in a Lazy Environment. MICRO’ 10

