
Allocating Rotating Registers
by Scheduling

Hongbo Rong Hyunchul Park
Cheng Wang Youfeng Wu

Intel Labs

MICRO-46, Dec. 2013

Memory disambiguation in
dynamic compilers

• Dynamic languages are increasing popular
– JavaScript 88.9% in client-side websites (W3Techs)
– PhP 81.5% in sever side (W3Techs)

• Huge amount of legacy code
– Dynamic binary translator
– Optimization scope tends to be small: For a loop,

usually a loop iteration
• Software pipelining: enlarge the scope

– Memory aliases are a bottleneck to performance

2

Memory disambiguation in
dynamic compilers (Cont.)

• A fundamental component in compilers
– Determines if two memory operations are aliased

• Approach 1: Alias analysis at compile time
– Too expensive or conservative for dynamic

compilers
– Only simple alias analysis can be done

• Approach 2: Alias detection at runtime with
hardware support

3

Alias Registers
• Enable data speculation

– Compiler optimistically assumes the memory operations do
not alias with each other, and schedules them out of order

– Compiler guards every memory operation with an alias
register to catch any alias when the schedule runs

4

Alias Registers
• Enable data speculation

– Compiler optimistically assumes the memory operations do
not alias with each other, and schedules them out of order

– Compiler guards every memory operation with an alias
register to catch any alias when the schedule runs

• Example:

5

Alias Registers
• Enable data speculation

– Compiler optimistically assumes the memory operations do
not alias with each other, and schedules them out of order

– Compiler guards every memory operation with an alias
register to catch any alias when the schedule runs

• Example:

LD [w]
ST [y]
ST [z]

Original order

ST [y]
ST [z]

LD [w]

6

Alias Registers
• Enable data speculation

– Compiler optimistically assumes the memory operations do
not alias with each other, and schedules them out of order

– Compiler guards every memory operation with an alias
register to catch any alias when the schedule runs

• Example:

LD [w]
ST [y]
ST [z]

Original order After speculation

Reordered!
ST [y]

ST [z]

LD [w]
7

Static Alias Registers

8

Static Alias Registers

SR1

SR2

SR3

SR0

9

Static Alias Registers

SR1

SR2

SR3

set
check

SR0

10

Static Alias Registers

SR1

SR2

SR3

set
check

SR0

ST x ... SR1

Mem
addr Set Check

11

Static Alias Registers

xxSR1

SR2

SR3

set
check

SR0

ST x ... SR1

Mem
addr Set Check

12

Static Alias Registers

xxSR1

SR2

SR3

ST y ... SR2

set
check

SR0

ST x ... SR1

Mem
addr Set Check

13

Static Alias Registers

xxSR1

SR2

SR3

ST y ... SR2

set
check

yy

SR0

ST x ... SR1

Mem
addr Set Check

14

Static Alias Registers

xxSR1

SR2

SR3

ST y ... SR2

LD z ... SR1,2

set
check

yy

SR0

ST x ... SR1

Mem
addr Set Check

15

Static Alias Registers

xxSR1

SR2

SR3

ST y ... SR2

LD z ... SR1,2

set
check

yy

SR0

ST x ... SR1

Mem
addr Set Check

16

Static alias registers are not enough
• 24 hot loops from SPEC2000, with static alias

registers only, loop throughput is far below
optimal

• Need more scalable hardware

6
Experiments on Transmeta Efficeon with 14 static alias regs

-120
-100

-80
-60
-40
-20

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Throughput is 11~106% below optimal

% fom
optimal

Loop
No.

Rotating Alias Registers

RR1

RR2

RR3

RR0

set
check

18

Rotating Alias Registers

RR1

RR2

RR3

RR0

set
check

ST x ... RR1

Mem
addr Set Check

19

Rotating Alias Registers

xxRR1

RR2

RR3

RR0

set
check

ST x ... RR1

Mem
addr Set Check

20

Rotating Alias Registers

xxRR1

RR2

RR3

RR0

ST y ... RR2

set
check

ST x ... RR1

Mem
addr Set Check

21

Rotating Alias Registers

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

set
check

ST x ... RR1

Mem
addr Set Check

22

Rotating Alias Registers

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

23

Rotating Alias Registers

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

24

Rotating Alias Registers

Unidirectional check

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

25

Rotating Alias Registers

Unidirectional check

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

26

• Encode 1 register, check many: scalable

False positives

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

27

False positives

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

28

ST z ... RR3
An earlier unrelated OP:

zz

False positives

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

29

ST z ... RR3
An earlier unrelated OP:

zz

False positives

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

30

ST z ... RR3
An earlier unrelated OP:

• Avoid by a good allocation
• Resort to static alias registers

zz

False positives

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

31

ST z ... RR3RR0
An earlier unrelated OP:

• Avoid by a good allocation
• Resort to static alias registers

zz

False positives

xxRR1

RR2

RR3

yy

RR0

ST y ... RR2

LD z ... RR1

set
check

ST x ... RR1

Mem
addr Set Check

32

ST z ... RR3
SR0

SR0
An earlier unrelated OP:

• Avoid by a good allocation
• Resort to static alias registers

zz

Rotating alias registers (Cont.)
• Comparison:

– ALAT in Itanium does not detect aliases
between stores

– DeAliaser [Ahn, Duan, Torrellas 2013] can
only check all speculative stores

• Effective for sequential code [Wang et al.
2012]

• A new problem: How to apply them to
loops?

9

Software Pipelining

10

• A loop with 3 operations in order

a b c

Software Pipelining

10

 Sequential execution

• A loop with 3 operations in order

a b c

Software Pipelining

10

a b c
Time0 3 6 9

 Sequential execution

• A loop with 3 operations in order

a b c

Software Pipelining

10

a b c
Time0 3 6 9

a b c

 Sequential execution

• A loop with 3 operations in order

a b c

Software Pipelining

10

a b c
Time0 3 6 9

a b c a b c

 Sequential execution

• A loop with 3 operations in order

a b c

Software Pipelining

10

a b c
Time0 3 6 9

a b c a b c

 Sequential execution

• To speedup
– Schedule operations out of order
 Overlap the execution of iterations

• A loop with 3 operations in order

a b c

Software Pipelining (Cont.)

11

Time

1st Itr

0 3 6 9

• Software-pipelined execution

a b c

Software Pipelining (Cont.)

11

Time

1st Itr

0 3 6 9

• Software-pipelined execution

abc

Software Pipelining (Cont.)

11

Time

c b a

1st Itr

2nd Itr

0 3 6 9

• Software-pipelined execution

abc

Software Pipelining (Cont.)

11

Time

c b a

c b a

1st Itr

2nd Itr

3rd Itr

0 3 6 9

• Software-pipelined execution

abc

Software Pipelining (Cont.)

11

Time

c b a

c b a

1st Itr

2nd Itr

3rd Itr

II=3

0 3 6 9

• Software-pipelined execution

abc

Software Pipelining (Cont.)

11

Time

c b a

c b a

1st Itr

2nd Itr

3rd Itr

II=3

0 3 6 9

• Software-pipelined execution

•Modulo scheduling
•Modulo property

abc

Software Pipelining (Cont.)

11

Time

c b a

c b a

1st Itr

2nd Itr

3rd Itr

II=3

0 3 6 9

• Software-pipelined execution

•Modulo scheduling
•Modulo property
•Dependence constraints

abc

Software Pipelining (Cont.)

11

Time

c b a

c b a

1st Itr

2nd Itr

3rd Itr

II=3

0 3 6 9

• Software-pipelined execution

•Modulo scheduling
•Modulo property
•Dependence constraints
•Resource constraints

abc

Objective

• Given a software-pipelined schedule of
a loop, how to allocate rotating alias
registers for the memory operations?
– Detect ALL aliases
– NO false positive
– Minimal usage of rotating & static alias

registers

12

Rotating Register Allocation ≡ Scheduling !
• It is a software pipelining problem

– A register allocation is a modulo schedule of lifetimes
– Any existing modulo scheduling algorithm can solve it

• Contributions
– Framework
– A simple algorithm LCP
– LCP usually achieves the best allocations in the least time
– Generalization: allocation of general-purpose rotating

registers is also a software pipelining problem
• It derives bin-packing of Rau et al. 1992

13

Software Pipelining Reviewed

14

Time

c b a

c b a

c b a

1st Itr

2nd Itr

3rd Itr

0 3 6 9

• Software-pipelined execution

Software Pipelining Reviewed

14

Time

c b a

c b a

c b a

1st Itr

2nd Itr

3rd Itr

0 3 6 9

• Software-pipelined execution

Check

Software Pipelining Reviewed

14

Time

c b a

c b a

c b a

1st Itr

2nd Itr

3rd Itr

0 3 6 9

• Software-pipelined execution

Check

Software Pipelining Reviewed

14

Time

c b a

c b a

c b a

1st Itr

2nd Itr

3rd Itr

0 3 6 9

• Software-pipelined execution

Check

A Register Allocation

15

Time

1st Itr

2nd Itr

3rd Itr

0 3 6 9

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

A Register Allocation

15

Time

1st Itr

2nd Itr

3rd Itr

0 3 6 9

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

Check

A Register Allocation

15

Time

1st Itr

2nd Itr

3rd Itr

0 3 6 9

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

RegII=2

Check

A Register Allocation

15

Time

1st Itr

2nd Itr

3rd Itr

0 3 6 9

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

RegII=2

“Time”

Check

A Register Allocation

15

Time

1st Itr

2nd Itr

3rd Itr

0 3 6 9

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

RegII=2

“Time”

“Resource”

Check

A Register Allocation

15

Time

1st Itr

2nd Itr

3rd Itr

0 3 6 9

Modulo schedule of lifetimes!

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

RegII=2

“Time”

“Resource”

Check

Problem formulation

• Modulo property: A constant initiation interval R

• Dependence constraints
• The ordering requirement between lifetimes

• Resource constraints
• Two lifetimes in the same register cannot overlap in time16

View Lifetimes as “Operations”
Registers as “Time”
Time as “Resources”

Then the allocation is a modulo schedule:

Unifying Dependence and Resource Constraints

17

LCP (Local Compaction followed by Pacing)

18

Time
0 3 6 9

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

LCP (Local Compaction followed by Pacing)

18

Time
0 3 6 9

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

RegII=1

LCP (Local Compaction followed by Pacing)

18

Time
0 3 6 9

cc
b ab a

cc
b ab a

cc
b ab a

Register

0

1

2

3

4

5

RegII=1

• Two heuristics to reduce false positives
– Max R and Earliest start

Overall flow

19

Overall flow

Modulo scheduling (operations)

Loop

JITSP(CGO’14)

19

Overall flow

Modulo scheduling (operations)

Rotating alias register allocation

Loop

JITSP(CGO’14)

JITSP, LCP, RS2,
DESP, Ideal

19

Overall flow

Modulo scheduling (operations)

Rotating alias register allocation

Loop

JITSP(CGO’14)

JITSP, LCP, RS2,
DESP, Ideal

Post-processing false positives

19

Overall flow

Modulo scheduling (operations)

Rotating alias register allocation

Code generation

Loop

JITSP(CGO’14)

JITSP, LCP, RS2,
DESP, Ideal

Post-processing false positives

19

Overall flow

Modulo scheduling (operations)

Rotating alias register allocation

Code generation

Loop

JITSP(CGO’14)

JITSP, LCP, RS2,
DESP, Ideal

Post-processing false positives

19

• Implemented in Transmeta Code Morphing Software (CMS)
• simulated with a variable-size rotating alias register file

% loops allocated successfully

• 11,825 software-pipelined loops from SPEC2000 dynamic traces
20

0

20

40

60

80

100

0 16 32 48 64 80 96 112 128

%
lo

o
p

s

#rotating alias registers

Ideal

LCP RS2

DESP JITSP

#false positives and allocation time

21

#false positive Allocation time

RS2 19X 4X
DESP 12X 1.6X
JITSP 14X 1.7X

• LCP has 0.16 false positives per loop iteration
• LCP takes 2.46% translation time, roughly about

0.07% total time
• #false positives and allocation time relative to LCP

Summary
• Rotating alias registers detect memory aliases at runtime

– Relatively new hardware
• Converting the allocation problem to scheduling problem

– Software pipelining scheduling has been studied for 3 decades
– Benefit from reusing well-known/stable algorithms
– Not limited to software pipelined loops: non-pipelined loops can be

treated as pipelined ones with only one stage
• Proposed LCP algorithm

– Simple and fast
• Extended to Itanium general rotating registers

– RegII ≡ 1
– Resource constraints

22

BACKUP

23

Rotation

xxRR1

RR2

RR3

yy

RR0

75

Base
pointer

Demonstration: Rotation size 2

Rotation

RR1

RR2

RR3

yy

RR0

76

Base
pointer

Demonstration: Rotation size 2

Rotation

RR1

RR2

RR3

yy

RR0

77

Base
pointer

RR2

RR3

RR0

RR1

Demonstration: Rotation size 2

Register assignment

25

Time
0 3 6 9

1

0

2

2

1

0

2 1

0

Rotate RegII registers every II time steps

Rotate Rotate Rotate

