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Memory disambiguation in 
dynamic compilers

• Dynamic languages are increasing popular
– JavaScript 88.9% in client-side websites (W3Techs)
– PhP 81.5% in sever side (W3Techs)

• Huge amount of legacy code 
– Dynamic binary translator 
– Optimization scope tends to be small: For a loop, 

usually a loop iteration
• Software pipelining: enlarge the scope

– Memory aliases are a bottleneck to performance
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Memory disambiguation in 
dynamic compilers (Cont.)

• A fundamental component in compilers
– Determines if two memory operations are aliased

• Approach 1: Alias analysis at compile time
– Too expensive or conservative for dynamic 

compilers
– Only simple alias analysis can be done

• Approach 2: Alias detection at runtime with 
hardware support
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Alias Registers
• Enable data speculation

– Compiler optimistically assumes the memory operations do 
not alias with each other, and schedules them out of order

– Compiler guards every memory operation with an alias 
register to catch any alias when the schedule runs
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Alias Registers
• Enable data speculation

– Compiler optimistically assumes the memory operations do 
not alias with each other, and schedules them out of order

– Compiler guards every memory operation with an alias 
register to catch any alias when the schedule runs

• Example:
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Alias Registers
• Enable data speculation

– Compiler optimistically assumes the memory operations do 
not alias with each other, and schedules them out of order

– Compiler guards every memory operation with an alias 
register to catch any alias when the schedule runs

• Example:

LD [w]
ST [y]
ST [z]

Original order

ST [y]
ST [z]

LD [w]
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Alias Registers
• Enable data speculation

– Compiler optimistically assumes the memory operations do 
not alias with each other, and schedules them out of order

– Compiler guards every memory operation with an alias 
register to catch any alias when the schedule runs

• Example:

LD [w]
ST [y]
ST [z]

Original order After speculation

Reordered!
ST [y]

ST [z]

LD [w]
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Static Alias Registers
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Static Alias Registers
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Static alias registers are not enough
• 24 hot loops from SPEC2000, with static alias 

registers only, loop throughput is far below 
optimal

• Need more scalable hardware

6
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Rotating Alias Registers
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Rotating Alias Registers
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Rotating Alias Registers
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• Encode 1 register, check many: scalable



False positives
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An earlier unrelated OP:
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ST    z ...   RR3
An earlier unrelated OP:

• Avoid by a good allocation
• Resort to static alias registers
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An earlier unrelated OP:
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• Resort to static alias registers
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ST    z ...   RR3
SR0

SR0
An earlier unrelated OP:

• Avoid by a good allocation
• Resort to static alias registers
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Rotating alias registers (Cont.)
• Comparison: 

– ALAT in Itanium does not detect aliases 
between stores

– DeAliaser [Ahn, Duan, Torrellas 2013] can 
only check all speculative stores

• Effective for sequential code [Wang et al. 
2012]

• A new problem: How to apply them to 
loops?
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Software Pipelining
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• A loop with 3 operations in order
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Software Pipelining
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• To speedup
– Schedule operations out of order
 Overlap the execution of iterations

• A loop with 3 operations in order
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Software Pipelining (Cont.)
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Software Pipelining (Cont.)
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• Software-pipelined execution

•Modulo scheduling
•Modulo property 
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Objective

• Given a software-pipelined schedule of 
a loop, how to allocate rotating alias 
registers for the memory operations?
– Detect ALL aliases
– NO false positive
– Minimal usage of rotating & static alias 

registers
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Rotating Register Allocation ≡ Scheduling !
• It is a software pipelining problem

– A register allocation is a modulo schedule of lifetimes
– Any existing modulo scheduling algorithm can solve it

• Contributions
– Framework
– A simple algorithm LCP
– LCP usually achieves the best allocations in the least time
– Generalization: allocation of general-purpose rotating 

registers is also a software pipelining problem
• It derives bin-packing of Rau et al. 1992
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A Register Allocation
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Problem formulation

• Modulo property: A constant initiation interval R

• Dependence constraints
• The ordering requirement between lifetimes

• Resource constraints
• Two lifetimes in the same register cannot overlap in time16

View    Lifetimes  as   “Operations”
Registers  as   “Time”
Time          as   “Resources”

Then the allocation is a modulo schedule:



Unifying Dependence and Resource Constraints
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LCP (Local Compaction followed by Pacing)
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• Two heuristics to reduce false positives
– Max R and Earliest start



Overall flow
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• Implemented in Transmeta Code Morphing Software (CMS)
• simulated with a variable-size rotating alias register file



% loops allocated successfully 

• 11,825 software-pipelined loops from SPEC2000 dynamic traces
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#false positives and allocation time
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#false positive Allocation time

RS2 19X 4X
DESP 12X 1.6X
JITSP 14X 1.7X

• LCP has 0.16 false positives per loop iteration
• LCP takes 2.46% translation time,  roughly about 

0.07% total time
• #false positives and allocation time relative to LCP



Summary
• Rotating alias registers detect memory aliases at runtime

– Relatively new hardware
• Converting the allocation problem to scheduling problem 

– Software pipelining scheduling has been studied for 3 decades
– Benefit from reusing well-known/stable algorithms
– Not limited to software pipelined loops: non-pipelined loops can be 

treated as pipelined ones with only one stage
• Proposed LCP algorithm

– Simple and fast
• Extended to Itanium general rotating registers

– RegII ≡ 1
– Resource constraints
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BACKUP
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Register assignment
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