
Introduction Introduction 

Motivating Example Motivating Example 

Rotating alias register file Rotating alias register file 

• Unidirectional check: LD specifies only register RR1, but 
the hardware checks all the higher-indexed registers, 
including RR1~3. 

• Scalability: encode only 1 register to check many.  

A rotating alias register file is a scalable hardware support to 
detect memory aliases at run-time. This paper solves the 
problem of allocating it for a software-pipelined loop schedule.  
 
We show that this allocation problem is a software pipelining 
scheduling problem, and it can be solved fast and efficiently. 

Results Results 

Generalization Generalization 
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RS2 19X 4X 
DESP 12X 1.6X 
JITSP 14X 1.7X 

If we view registers as “time”, and time as “resources”, then the 
allocation is a modulo schedule of lifetimes: 
• Modulo property: a register initiation interval 
• Dependence constraints: The checks can be modeled as 

dependences. 
• Resource constraints: Two lifetimes in the same register do 

not overlap in time. 

Algorithm framework Algorithm framework 

Step 1: Dependence building 
Step 2: Modulo scheduling 
Step 3: Removing potential false positives 
Step 4: Register assignment 

In Step 2, any modulo scheduling algorithm works, but differs 
in register usage and false positives. We propose a simple 
algorithm LCP (Local scheduling followed by Pacing): 
• Calculate a local scheduling for an iteration 
• Pack the schedule of every iteration at an RegII.  
• Heuristics to reduce false positives: Max R, Earliest start 

An algorithm specially for register allocation An algorithm specially for register allocation 

An allocation of rotating general registers is also a modulo 
schedule of lifetimes, where the initiation interval R  1, 
and there are resource constraints but no dependence 
constraints. 
This formulation can derive the bin-packing approach of 
Rau et al. 1992, which was shown to be effective. 
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• Solution implemented in Transmeta Code Morphing 
Software, a dynamic binary translator. 

• LCP is compared with JITSP (Just-in-time software pipelining, 
to appear in CGO’14), RS2 (rotation scheduling), DESP 
(Decomposed software pipelining), and Ideal (an imagined 
ideal allocator) 

• With 11,825 loops in SPEC2000, LCP shows near-ideal 
register usage. It is faster than the other algorithms and 
with less false positives, thanks to the two heuristic. 

• On average, LCP has 0.16 false positives per iteration; LCP 
takes 2.46% translation time, roughly 0.07% of total time. 

• Performance impact: measured with 24 hot loops, with 
static, but without rotating, alias registers, II increases by 
11% ~116%, indicating significant performance degradation. 

Allocating Rotating Registers by Scheduling 
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