
Introduction Introduction

Motivating Example Motivating Example

Rotating alias register file Rotating alias register file

• Unidirectional check: LD specifies only register RR1, but
the hardware checks all the higher-indexed registers,
including RR1~3.

• Scalability: encode only 1 register to check many.

A rotating alias register file is a scalable hardware support to
detect memory aliases at run-time. This paper solves the
problem of allocating it for a software-pipelined loop schedule.

We show that this allocation problem is a software pipelining
scheduling problem, and it can be solved fast and efficiently.

Results Results

Generalization Generalization

0

20

40

60

80

100

0 16 32 48 64 80 96 112 128

%loops
 allocated

successfully

#rotating alias registers

Ideal

RS2

DESP JITSP

LCP

#false positives
relative to LCP

Allocation time
relative to LCP

RS2 19X 4X
DESP 12X 1.6X
JITSP 14X 1.7X

If we view registers as “time”, and time as “resources”, then the
allocation is a modulo schedule of lifetimes:
• Modulo property: a register initiation interval
• Dependence constraints: The checks can be modeled as

dependences.
• Resource constraints: Two lifetimes in the same register do

not overlap in time.

Algorithm framework Algorithm framework

Step 1: Dependence building
Step 2: Modulo scheduling
Step 3: Removing potential false positives
Step 4: Register assignment

In Step 2, any modulo scheduling algorithm works, but differs
in register usage and false positives. We propose a simple
algorithm LCP (Local scheduling followed by Pacing):
• Calculate a local scheduling for an iteration
• Pack the schedule of every iteration at an RegII.
• Heuristics to reduce false positives: Max R, Earliest start

An algorithm specially for register allocation An algorithm specially for register allocation

An allocation of rotating general registers is also a modulo
schedule of lifetimes, where the initiation interval R 1,
and there are resource constraints but no dependence
constraints.
This formulation can derive the bin-packing approach of
Rau et al. 1992, which was shown to be effective.

Hongbo Rong Hyunchul Park Cheng Wang Youfeng Wu
Intel Labs

Time
0 3 6 9

c c
b b

c c
b b

c c
b b

Register

0

1

2
3

RegII=1

Time

c b a

c b a

 c b a

1st Itr

2nd Itr

3rd Itr

II=3

0 3 6 9 Modulo
scheduling

Rotating alias register
allocation

• Solution implemented in Transmeta Code Morphing
Software, a dynamic binary translator.

• LCP is compared with JITSP (Just-in-time software pipelining,
to appear in CGO’14), RS2 (rotation scheduling), DESP
(Decomposed software pipelining), and Ideal (an imagined
ideal allocator)

• With 11,825 loops in SPEC2000, LCP shows near-ideal
register usage. It is faster than the other algorithms and
with less false positives, thanks to the two heuristic.

• On average, LCP has 0.16 false positives per iteration; LCP
takes 2.46% translation time, roughly 0.07% of total time.

• Performance impact: measured with 24 hot loops, with
static, but without rotating, alias registers, II increases by
11% ~116%, indicating significant performance degradation.

Allocating Rotating Registers by Scheduling

Unidirectional check

x x RR1

RR2

RR3

y y

RR0

ST y ... RR2

LD z ... RR1

ST x ... RR1

Mem
addr Set Check

1

Check

a b c
A loop:

