

Enabling Datacenter Servers to Scale Out Economically and Sustainably

Chao Li*, Yang Hu*, Ruijin Zhou*, Ming Liu*, Longjun Liu§, Jingling Yuan†, Tao Li*

HMI

(ModBus TCP/Server)

Introduction

☐ The 'scale-out' issue in datacenters

- Server consolidation limits workload performance through SW based or HW based control knobs.
 Conventional centralized power provisioning scheme does not scale well
- ☐ Scale out power-constrained data centers
 - Datacenters are power-constrained
 - Datacenters are carbon-constrained

Technical Approach

☐ Scale-out model

- Distributed incremental integration
- ☐ Modular power sources
 - Distributed energy storage system
 - Solar power module with micro-inverters

□ Power control hub (PCH)

- A prototype that integrates battery charger, inverter, power source switch, control devices(PLC&HMI)
- □ Dynamic energy source switching
 - Autonomous mode
 - Coordinated mode

Power management agent and the data communication scheme inside of *Oasis node*.

Server OS

(ModBus TCP/Client)

System Implementation

System prototype

Contributions

☐ Fine-grained scale out power infrastructure

- Oasis leverages modular renewable power integration and distributed battery architecture to provide flexible power capacity increments
- Could reduce CapEx by 25%

☐ Prototyped research platform

- Power supply monitoring
- Communication gateway
- Power supply switching

□ Optimization algorithm

 Oasis could reduce workload execution delay to 1%, extend battery lifetime by over 50%, increase battery autonomy time by 1.9X

Experimental Results

Fig. 2: The estimated battery lifetime

Fig. 3: The average battery backup capacity

Future Work

□ Battery management

Optimize battery usage effectiveness

☐ Renewable power prediction

Minimize control overhead

☐ Feedback control on server system

- o Improve cloud server performance
- Improve robustness

References

- 1. Chao Li, Wangyuan Zhang, Chang-Burm Cho, Tao Li, **SolarCore: Solar Energy Driven Multi-core Architecture Power Management**, in Proceedings of the 17th International Symposium on High-Performance Computer Architecture (**HPCA**), February 2011
- 2. Chao Li, Amer Qouneh, Tao Li, **iSwitch: Coordinating and Optimizing Renewable Energy Powered Server Clusters**, International Symposium on Computer Architecture (**ISCA**), June 2012

