The Reuse Cache
Downsizing the Shared Last-Level Cache

Jorge Albericio', Pablo Ibanez?, Victor ViAals?, and José M. Llaberia3

L! UNIVERSITY OF 3 |
TORONTO l Zaragoza

Modern CMPs

Intel e5 2600 (2013) AMD Orochi (20.1 2)

I‘""” fﬂll!u

T lll

le wxuo"' UEJ_LJE)I

Inclusive Shared Last-Level Cache (SLLC)

8MB Conventional s_i;e Reuse Cache

1/8

1/2

Same average performance*
with 84% area savings

*100 multiprogrammed SPEC CPU 2006 workloads in an 8-core CMP

Outline

= Motivation

* The reuse cache
* |dea
* Organization
* Coherence
* Replacement
» Related work
= Evaluation

= Conclusions

Outline

= Motivation

MOtivatiOn Reuse locality

« Used more than one time
likely to be used many times

* Recently reused lines
SLLC data more useful than lines reused before

Many hits

Opportunity for a
smaller SLLC
which stores only

reused data

Motivation

Live cache fraction evolution

0.75
2
oc 05
—

0.75F

0.5]
0 1000 2000 3000 4000 5000 6000
time (x100K cycles)

» The fraction of live SLLC lines is very small (10-30% LRU)

* On average 78% of lines won’t receive any additional access

» State-of-art replacement policies better

O
NSy
o o

1

DRRIP
(6}

o

NRR

7 8MB Shared LLC, 16-way, LRU, 8-core CMP, mix #14

Motivation

100%—

5% of all the loaded lines
concentrate all the hits

50%~ 0.5% of all the loaded lines

concentrate close to 50% of hits

Total hits |

I .
0.5% 59 Inserted lines

Most of the inserted lines will not experience any hit

because hits concentrate in a few lines

8 8MB Shared LLC, 16-way, LRU, 8-core CMP, mix #14

Outline

* The reuse cache
* Idea
* Organization
* Coherence protocol
* Replacement

Idea

Data is stored only when reuse is detected

From main memory From main memory

insertion

data

insertion
T Data
tag hit P

| .
To private | To private §
caches : caches
:
|
First access: Second access:
Miss = only tag insertion Tag hit > data insertion

10 (reuse detected)

Organization

» Decoupled tag and data arrays
* More tag than data entries

Conventional cache

11

Reuse cache

Organization

Tag array

* Maintains coherence/inclusion

NORMAL

* Set-associative
* Each entry has associated data or not

NEW|* Forward pointers: to indicate
corresponding data array entry

Tag array

state pointer

Organization

= Data array
* Only stores reused lines
* Queue or set-associative

* Reverse pointers:
update tag array entry

Tag array

16-way

pointer data repl.

13

Coherence

= Conventional coherence protocols
can be used with small changes

* Two types of states have to be considered

v Tag-only states
v Tag + data states

* Transitions between both types of states
are triggered by data insertions or evictions

14

Data array
insertion
(reuse)

Data
eviction

Tag + data
states

Replacement

» Tag and data arrays have independent replacement

policies
* Tag array

v Not Recently-Reused (NRR) ' [Albericio et al. TACO’13]

» reused and private cache contents are unlikely to be evicted

* Data array

v Clock, for queue organization [Corbaté MIT’68]

v Not Recently-Used (NRU), for set associativity

15

NRU vs NRR

= NRU
* Exploiting temporal locality (approx. to LRU)
* 1 bit per line
* Used on intel i7 and SPARC T2

I Insertion

= NRR!
* Exploiting reuse locality
* 1 bit per line
* Private cache contents are protected

1 Insertion
16

Outline

= Related work

17

Related work

» Many proposals decouple tag/data arrays
* Decoupled sectored caches, Seznec, ISCA 1994
* The pool of subsectors, Rothman and A. Smith, ICS 1999
* NuRAPID, Chishti et al., MICRO 2003
* V-way, Qureshi et al., ISCA 2005

* Non-inclusive cache, inclusive
directory (NCID), Zhao et al., e ©°1
Computer Frontiers 2010 e -

* Additional tags to maintain inclusion

* Selective allocation policy based on set
dueling

Tag -

Outline

= Evaluation

19

Methodology

Baseline system configuration
* 8 in-order core CMP system

1 DDR3 channel

8MB SLLC
LRU, 16-way
(inclusive)

crossbar

256KB L2

16KB 1$
16KB D$

20

» Simulation
* Simics full-system simulator
* Ruby from GEMS Multifacet

= Area and latency
* CACTI 6.5

= Workloads

* Multi-programmed: SPEC
CPU 2006 (100 random mixes
from all the 29 applications)

e Parallel: from PARSEC and
SPLASH?2

Terminology

» RC-x/y = Reuse cache with tags equivalent to x MB,
y MB of data

RC-x/y

‘\
\\
S

~HRELE
7’

Tags _
. Conventional cache
of y MB

Conventional cache
of x MB

21

Size exploration

Chosen configuration for
each data array size

\ N\

\
L\

1.15

1.1

1.05 -

0.95 -

Performance over conventional SMB

09 5463264 481632 24816 24816 24 816

RC-x/8 RC-x/4 RC-x/2 RC-x/1 RC-x/0.5

Size exploration
1.15 \

This configuration keeps average [100%
performance while it reduces size

1.1 / 80%

Hardware cost

1.05 60%

1 L Conv. 8MB LRU 40%

0.95 20%

0.9 / 0%

-~ RC-16/8 RC-8/4 RC-8/2/ RC-4/1 RC-4/0.5

Same avg. performance
23 with 84% area savings

Performance over conventional SMB

Hardware cost respect to conv. SMB

Performance over conventional SMB

Better baseline

1.15

1.1 +1.1% perf.

-40% HW cost

-0.7% perf.

Conv. DRRIP 8MB

OIS e S——— -60% HW cost ======

Conv. LRU 8MB

0.95

°9RC-16/8 RC-8/4 RC-8/2 RC-4/1

RC-4/0.5

25

Multiprogrammed

9 workloads over 5%

of speedup

RC-4/1

R

1.0
0.9

\

Better in more than
half of the mixes

Performance over convéntional 8MB

[

0

20 40
Mixes

60

80

6 workloads over
5% of slowdown

26

NCID comparison

Performance over conventional 8MB

1.1 7.0%
6.49 M Reuse cache
. 0
1.05 /‘\ 5.2% NCID
] 5.3%

0.95 - \

0.9 : . .
RC-8/4 RC-8/2 RC-4/1 RC-4/0.5
NCID-8/4 NCID-8/2 NCID-4/1 NCID-4/0.5

Behavior insight

27

Percentage of data stored into the cache
with respect to the number of tags

* Conventional cache(100%

Our selection of contents policy _
is selecting lines that will receive hits 5% of the loaded lines
get all the hits

100%

|

|

|

50% |

| |
Percentage | | Percentage of
of total hits | | inserted lines

i i

0.5% 5%

Additional results

* Performance analysis for more sizes
= Set-associative data array

» Per-application study

= Parallel workloads

28

Outline

= Conclusions

29

Conclusions

» A big fraction of the SLLC contents is dead
* A selective allocation policy is needed

= A SLLC organization is proposed: the reuse cache
* Very selective line allocation policy, based on reuse
* Same avg. performance with 84% storage savings

* Alternative applications:
v Further reduction of energy
v More computing elements with same area

30

The Reuse Cache
Downsizing the Shared Last-Level Cache

Jorge Albericio', Pablo Ibanez?, Victor ViAals?, and José M. Llaberia3

uj UNIVERSITY OF 3 |
9 TORONTO l Zaragoza @

