Imbalanced Cache Partitioning

for Balanced Data-Parallel
Programs

Abhisek Pan & Vijay S. Pai

Electrical and Computer Engineering
Purdue University
MICRO-46, 2013

Motivation

- Last level cache partitioning heavily studied
for multiprogramming workloads

» Multithreading # multiprogramming
= All threads have to progress equally

= Pure throughput maximization is not enough

- Data-parallel threads are similar to each other in
their data access patterns

- However equal allocation => suboptimal cache
utilization

MICRO-46, 2013

e ——
Motivation

- Last level cache partitioning heavily studied
for multiprogramming workloads

» Multithreading # multiprogramming
= All threads have to progress equally
= Pure throughput maximization is not enough

- Data-parallel threads are similar to each other in
their data access patterns

- However equal allocation => suboptimal cache
utilization

_hreads need highly imbalanced partitions

MICRO-46, 2013

e —
Contributions

» Shared LLC partitioning for balanced data-
parallel applications

- Increasing allocation for one thread at a
time improves utilization

- Prioritizing each thread in turn ensures
balanced progress

» 17% drop in miss rate, 8% drop in execution
time on average for 4-core S8MB cache

- Negligible overheads

MICRO-46, 2013

s
Outline

- Motivation

- Contributions

- Background

- Memory Reuse Behavior of Threads
» Proposed Scheme

- Evaluation

» Overheads & Limitations

» Conclusion

MICRO-46, 2013

il
Way-partitioning

- N-way set-associative cache = > each set
has N ways or blocks

- Unpartitioned cache
= Least recently used entry among all ways replaced on a
miss
» Thread-agnostic LRU
- Way-partitioning
= Each way is owned by one core at a time
= On a miss, a core replaces the LRU entry among the
ways owned by it
= No restriction on access, only on replacement
MICRO-46, 2013

T —

Per-thread Miss Rate Curves

» Miss-rate vs. ways in a single set
» Each thread considered in isolation

Miss Rate

1.0

0.8

0.6

0.4

0.2

0.0

f

\working set 1)ex Thea

\

<= Thread 0

>—>» Thread 2
+—+ Thread 3
N / working set 2
\
K =X — s

;% /
\ —
L L1 L g
(&) (@) (@) (&) (@) (@) (@) (@) (@) (@)
} o/ A\ © © (&) o/ \a © '

~ ~ ~ ~ ~

MICRO-46, 2013

Per-thread Miss Rate Curves

» Miss-rate vs. ways in a single set
» Each thread considered in isolation

1.0 F

<= Thread 0

0.8 _\VV'OI'kiIlg Set 1 %=X Thread 1

—>» Thread 2
\ +—+ Thread 3
0.6 [~y .
s working set 2
' \

Miss Rate

e

0.2 L K =K — s

0.0 | | |
S¢S SIS
Ways Inefficient
Allocation!

MICRO-46, 2013

Symmetric Memory Access

Ways
Fluidamimate, 24 sets

. ~+—~ Thread 0 . «—= Thread 0
o o8P X Thead 2 Q osp 5 Thread 2
"c'é \ +—+ Thread 3 "c'é \ +—+ Thread 3
g 06| G 06
) X)
Looaf \\<j§\ N2 36\
E02— *X E 0.2 | *'**_KZS
0.0 L1 1 1 *é“ N R 0.0 | | | | | | \d;:L.
PO 9990 999999999 S 9 9 © © 9 © o o 9
SVVYead Saryeagya @ S W ¥ o o S Y ¥ & o
Ways Ways
Art, 212 sets Blackscholes, 29 sets
1.0 ° °
1 = e « Miss-curves symmetric
L 08 —> Thread 2
"C'é \ +—+ Thread 3 h d
& ool across threads
2 0.4\
= | b « Seen for all
=y
ok e e g
) R benchmarks & cache

sizes
MICRO-46, 2013

Utilization through Imbalance

- WS too small Improvement
1SS .
Rate i Eopportunlty
“?)
- . : o —
. = o et
O 8 Ways 32 0 8 32
WS too large - 32 way cache, 4 threads —

default allocation = 8 ways /
thread

S Prioritize one thread at a time
32 Vary preferred thread identity

MICRO-46, 2013

Improvement

WS too small

Rate opportunity
"7
! . ! b >
- —> ! — >
0 8 Ways 32 0 8 32
WS too large - 32 way cache, 4 threads —

default allocation = 8 ways /
thread

s« Prioritize one thread at a time
32 Vary preferred thread identity

0 8

_n partitions benefits the preferred thread

MICRO-46, 2013

High Imbalance & Unpreferred threads

- Each thread switches between preferred
and un-preferred

- Unpreferred thread data remains in
preferred partition

- Continues to benefit un-preferred thread
even as its partition shrinks

- Imbalance magnifies benetfits by reducing
pressure on preferred partition

MICRO-46, 2013

T
High Imbalance & Unpreferred threads

- Each thread switches between preferred
and un-preferred

- Unpreferred thread data remains in
preferred partition

 Continues to benefit un-preferred thread
even as its partition shrinks

- Imbalance magnifies benefits by reducing
pressure on preferred partition

-red partition benefits unpreferred threads too

MICRO-46, 2013

e
Proposed Strategy

- Default allocation is inefficient
- Allocate extra ways to a single thread by
equally penalizing all other threads

- Select the preferred thread in round-robin

manner
= Ensure balanced progress

- Allocation changes at pre-set execution intervals

MICRO-46, 2013

T
Two-Stage Partitioning

- Evaluation Stage
= Triggers at the start of a new program phase
= Divide the cache sets into equal-sized segments

= Each segment is partitioned into a different level of
imbalance

= 32 way cache shared among 4 cores — configurations
from 8-8-8-8 -> 29-1-1-1

= Each core is prioritized in turn

= Configuration with least number of misses chosen

MICRO-46, 2013

Evaluation Stage Cache
Ways

B Thread 1 | Thread 2| | Thread 3 l} Thread 4

Segments
ONONUT A~ W PN

- Each segment has multiple sets
- Each thread becomes the preferred thread in turn

MICRO-46, 2013

Evaluation Stage Cache
Ways

Segments
ONONUT A~ W PN

B Thread 1 | Thread 2| | Thread 3 l} Thread 4

- Each segment has multiple sets
- Each thread becomes the preferred thread in turn

-mbalance on preferred and unpreferred threads

MICRO-46, 2013

i

Considering Unpartitioned Cache

- An unpartitioned (thread-agnostic LRU)
segment included in evaluation

- Replace a low-imbalance configuration

- Benefits of partitioning are obtained through high
levels of imbalance

MICRO-46, 2013

T

Unpartitioned Segment
Ways

Segments
ONONUT A~ W PN

B Thread1 [Thread 2| | Thread 3 [} Thread 4

| | No partitions

MICRO-46, 2013

|
Stable Stage

- Maintain the chosen configuration till the
next program phase change

» Choose preferred thread in round-robin
manner

- Basic-block vector tracking used to identify
changes in program phase (based on
previous work)

MICRO-46, 2013

Evaluation Framework

 Simulator: Simics-GEMS
- Target: 4-core CMP with 32 way shared L2

cache, and 2 way private L1 caches
= 1 thread per core, 64 byte line size, LRU replacement

- Workload:
= g data-parallel workloads
= Mix of parsec (pthread build) and SPEC OMP suite

= Parsec - Blackscholes, Canneal, Fluidanimate,
Streamcluster, Swaptions

= SPEC OMP — Art, Equake, Swim, Wupwise

MICRO-46, 2013

Baselines

- Unpartitioned cache (thread-agnostic LRU)
- Statically equi-partitioned cache

- A CPI-based adaptive partitioning scheme
(Muralidhara et al., IPDPS 2010)

s Starts with equal partition

= Proportional partitioning (ways proportional to
CPI)

= Store <ways, CPI> to build a runtime model to
predict CPI variations with change in allocation

= Accelerate critical thread

MICRO-46, 2013

T

Misses vs size

4-core 32-way cache with equal partitions

- Art -¢Blackscholes “¥Canneal -“@-Equake -#-Fluidanimate
—Streamcluster —Swaptions ~4-Swim Wupwise
1.E+09 ' 1
1E+08 | ot -
—
9 1.E+07 —C
a X
S \ — ¢ S

1.E+06 \ \ \. ’ ’

1.E+05 \ \
1.E+04 ————
1.E+03 T T T T T T T I I I I I 1

128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M 512M

Cache Size (Bytes)

MICRO-46, 2013

1

Results

- Benefits of partitioning strongly tied to
cache size

- Partitioning beneficial only when per-
thread working set is between the default
allocation and the cache capacity

» Proposed method outperforms the baselines
where there is potential for benefit

MICRO-46, 2013

Comparison with Unpartitioned:
8 MB cache, 4 cores, 32 ways

B STATIC-EQ M CPI IMB-RR

1.2
1 - {
8 0.8 -
h 0.6 -
2 04 -
E 0.2 -
0 - T T T T T T
) S X < > . .
& ¥ v ¢ @ F ¢
QS N\ Q S N S Q
& & & © N
S 3 & \\3\5
K% 3 3 B STATIC-EQ M CPI IMB-RR
1.2
g !
o= 0.8 -
= 0.6
o .
®) 0.4 -
o pu{
".5‘ 0.2
Q i
gé 0
&)
6a) (\00 \\&Q'
R &
& N
S *
Q}

MICRO-46, 2013

T

Comparison with Unpartitioned:
32 MB cache, 4 cores, 32 ways

B STATIC-EQ M CPI IMB-%IB 15 1.6

Misses
o
D

i S
S < M STATIC-EQ W CPI © IMB-RR

Execution Time

MICRO-46, 2013

T

Comparison with Unpartitioned:
128 MB cache, 4 cores, 32 ways

B STATIC-EQ ECPI IMB-RR

1.2

1 -
0.8 -
0.6 -
0.4 -

Misses

B STATIC-EQ W CPI IMB-RR

Execution Time

MICRO-46, 2013

T

Across the Board

* Outperforms the CPI-based in most cases where
there is potential for benefit

= Proportional partitioning generates data points near the
default allocation

s From these starting points the search fails to find the
high-utility (high-imbalance) configurations

- No partitioning is best in some cases (Equake)

= Constructive interference
s Proposed scheme chooses global LRU appropriately
= Worst-case 5% increase in time due to evaluation

MICRO-46, 2013

T —
Overheads

- Space overhead negligible
= Way partitioning for each segment

- Program phase detection overhead
= Basic block vector tracking

- For small cache sizes, evaluation stage can

Increase execution time
s <1 % on average, 5 % maximum

MICRO-46, 2013

T

Limitations
- Scalability

s Fine-grained barriers would mean smaller intervals

- Limited exploration of solution space

= One preferred thread at a time

= The benefits of high imbalance makes the scheme
practical

MICRO-46, 2013

Conclusion

» Simple runtime partitioning for balanced
data-parallel programs

» Effective cache utilization and balanced
progress achieved through

A. High Imbalance in partitions and
B. Prioritizing each thread in turn

- High imbalance allows un-preferred threads
to benefit from the large preferred partition

MICRO-46, 2013

Thank You!

Questions...

MICRO-46, 2013

T

Injecting Extra Imbalance

Long RD accesses not served

2y T1(+) 2 T2 (-y by shrinking partition
S | =
= | 5
g | A B
i S ; R
0 Wayg / SSRD16 0 Wayg/ SSRD16 Long RD accesses are protected

. , in preferred partition
B Hits B Misses

T1 (++) T2 (--)
» Over-allocation in 9 &
preferred thread 5, § s
o} ; O
protects long = 5 =
distance accesses of !
unpreferred thread 0 8 0

Ways/ SSRD Ways/ SSRD

MICRO-46, 2013

e

Effect of Over-allocation

7
X 10 Temm Miss BB Shared Self-Hit x 10
1.2 = [Private Self-Hit Bl Shared Foreign Hit
Il Private Foreign Hit 30L
1.0 | B '
- B B g B = o 25 M
@ 0.8 | - 3
g 0.6 - .% 1.5
() o
T o4 1.0
0.2 | 0.5 -
ool—M m W oo b oo oL o 0.0 : NP
®© ~ N AN (@) (%) © (©))
I Allocation
Allocation
Thread in preferred state Thread in un-preferred state

- Benefits to preferred thread saturate at 14 ways
- Benetfits to un-preferred thread increase as allocation falls
- Hits for un-preferred thread are in preferred thread partition

MICRO-46, 2013

e
Adapting to Phase Changes

- Changes in program phase need to be
identified to trigger evaluation

- Per-thread binary basic block vectors are
used to identify the basic blocks touched in
each interval

- Hamming distance between the BBVs of
current and last intervals are compared to
identify phase changes

MICRO-46, 2013

s

Considering Unpartitioned Cache

- Time spent in various imbalance
configurations for runs showing benefits of

partiioning
60 53.9
§ 50
E 40
= 30 :
o 20
Cb‘b ,\’\ (o‘o 5959 ,b‘b‘ ,b”) ,\/’\/ ,\/'\/
%‘b A bfo ,\fo Q,v o) (o’\/ N
N N N A Voo %
Allocations

MICRO-46, 2013

T

Round-robin vs. Critical-thread

- Prioritize the critical thread instead of using round robin

- No significant difference — Accelerating critical thread has
the same effect as giving each thread a fair share

M Normalized Execution Time Normalized Misses
1.2
1 -
0.8 - —
0.6 - —
0.4 - —
0.2 - —
O a |
9 > S S S Q §
S & S
& g & N s
S 3 &)
Q> N &

Performance of critical- thread normalized to round-robin

MICRO-46, 2013

