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Motivation

- Last level cache partitioning heavily studied
for multiprogramming workloads

» Multithreading # multiprogramming
= All threads have to progress equally

= Pure throughput maximization is not enough

- Data-parallel threads are similar to each other in
their data access patterns

- However equal allocation => suboptimal cache
utilization
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Motivation

- Last level cache partitioning heavily studied
for multiprogramming workloads

» Multithreading # multiprogramming
= All threads have to progress equally
= Pure throughput maximization is not enough

- Data-parallel threads are similar to each other in
their data access patterns

- However equal allocation => suboptimal cache
utilization

_hreads need highly imbalanced partitions
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Contributions

» Shared LLC partitioning for balanced data-
parallel applications

- Increasing allocation for one thread at a
time improves utilization

- Prioritizing each thread in turn ensures
balanced progress

» 17% drop in miss rate, 8% drop in execution
time on average for 4-core S8MB cache

- Negligible overheads

MICRO-46, 2013



s
Outline

- Motivation

- Contributions

- Background

- Memory Reuse Behavior of Threads
» Proposed Scheme

- Evaluation

» Overheads & Limitations

» Conclusion

MICRO-46, 2013



il
Way-partitioning

- N-way set-associative cache = > each set
has N ways or blocks

- Unpartitioned cache
= Least recently used entry among all ways replaced on a
miss
» Thread-agnostic LRU
- Way-partitioning
= Each way is owned by one core at a time
= On a miss, a core replaces the LRU entry among the
ways owned by it
= No restriction on access, only on replacement
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Per-thread Miss Rate Curves

» Miss-rate vs. ways in a single set
» Each thread considered in isolation
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Per-thread Miss Rate Curves

» Miss-rate vs. ways in a single set
» Each thread considered in isolation
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Symmetric Memory Access
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Fluidamimate, 24 sets

. ~+—~ Thread 0 . «—= Thread 0
o o8P X Thead 2 Q osp 5 Thread 2
"c'é \ +—+ Thread 3 "c'é \ +—+ Thread 3
g 06| G 06
) X )
Looaf \\<j§\ N2 36\
E02— *X E 0.2 | *'**_KZS
0.0 L1 1 1 *é“ N R 0.0 | | | | | | \d;:L.
PO 9990 999999999 S 9 9 © © 9 © o o 9
SVVYead Saryeagya @ S W ¥ o o S Y ¥ & o
Ways Ways
Art, 212 sets Blackscholes, 29 sets
1.0 ° °
1 = e « Miss-curves symmetric
L 08 —> Thread 2
"C'é \ +—+ Thread 3 h d
& ool across threads
2 0.4\
= | b « Seen for all
=y
ok e e g
) R benchmarks & cache

sizes
MICRO-46, 2013



Utilization through Imbalance

- WS too small Improvement
1SS .
Rate i Eopportunlty
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WS too large - 32 way cache, 4 threads —

default allocation = 8 ways /
thread

S Prioritize one thread at a time
32 Vary preferred thread identity

MICRO-46, 2013



Improvement

WS too small
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thread

s« Prioritize one thread at a time
32 Vary preferred thread identity
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_n partitions benefits the preferred thread
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High Imbalance & Unpreferred threads

- Each thread switches between preferred
and un-preferred

- Unpreferred thread data remains in
preferred partition

- Continues to benefit un-preferred thread
even as its partition shrinks

- Imbalance magnifies benetfits by reducing
pressure on preferred partition
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High Imbalance & Unpreferred threads

- Each thread switches between preferred
and un-preferred

- Unpreferred thread data remains in
preferred partition

 Continues to benefit un-preferred thread
even as its partition shrinks

- Imbalance magnifies benefits by reducing
pressure on preferred partition

-red partition benefits unpreferred threads too

MICRO-46, 2013




e
Proposed Strategy

- Default allocation is inefficient
- Allocate extra ways to a single thread by
equally penalizing all other threads

- Select the preferred thread in round-robin

manner
= Ensure balanced progress

- Allocation changes at pre-set execution intervals
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Two-Stage Partitioning

- Evaluation Stage
= Triggers at the start of a new program phase
= Divide the cache sets into equal-sized segments

= Each segment is partitioned into a different level of
imbalance

= 32 way cache shared among 4 cores — configurations
from 8-8-8-8 -> 29-1-1-1

= Each core is prioritized in turn

= Configuration with least number of misses chosen
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Evaluation Stage Cache
Ways
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Segments
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- Each segment has multiple sets
- Each thread becomes the preferred thread in turn
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Evaluation Stage Cache
Ways

Segments
ONONUT A~ W PN

B Thread 1 | Thread 2| | Thread 3 l} Thread 4

- Each segment has multiple sets
- Each thread becomes the preferred thread in turn

-mbalance on preferred and unpreferred threads
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Considering Unpartitioned Cache

- An unpartitioned (thread-agnostic LRU)
segment included in evaluation

- Replace a low-imbalance configuration

- Benefits of partitioning are obtained through high
levels of imbalance
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Unpartitioned Segment
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Stable Stage

- Maintain the chosen configuration till the
next program phase change

» Choose preferred thread in round-robin
manner

- Basic-block vector tracking used to identify
changes in program phase (based on
previous work)
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Evaluation Framework

 Simulator: Simics-GEMS
- Target: 4-core CMP with 32 way shared L2

cache, and 2 way private L1 caches
= 1 thread per core, 64 byte line size, LRU replacement

- Workload:
= g data-parallel workloads
= Mix of parsec (pthread build) and SPEC OMP suite

= Parsec - Blackscholes, Canneal, Fluidanimate,
Streamcluster, Swaptions

= SPEC OMP — Art, Equake, Swim, Wupwise
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Baselines

- Unpartitioned cache (thread-agnostic LRU)
- Statically equi-partitioned cache

- A CPI-based adaptive partitioning scheme
(Muralidhara et al., IPDPS 2010)

s Starts with equal partition

= Proportional partitioning (ways proportional to
CPI)

= Store <ways, CPI> to build a runtime model to
predict CPI variations with change in allocation

= Accelerate critical thread
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Misses vs size

4-core 32-way cache with equal partitions
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Results

- Benefits of partitioning strongly tied to
cache size

- Partitioning beneficial only when per-
thread working set is between the default
allocation and the cache capacity

» Proposed method outperforms the baselines
where there is potential for benefit
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Comparison with Unpartitioned:
8 MB cache, 4 cores, 32 ways
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Comparison with Unpartitioned:
32 MB cache, 4 cores, 32 ways
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Comparison with Unpartitioned:
128 MB cache, 4 cores, 32 ways
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Across the Board

* Outperforms the CPI-based in most cases where
there is potential for benefit

= Proportional partitioning generates data points near the
default allocation

s From these starting points the search fails to find the
high-utility (high-imbalance) configurations

- No partitioning is best in some cases (Equake)

= Constructive interference
s Proposed scheme chooses global LRU appropriately
= Worst-case 5% increase in time due to evaluation
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Overheads

- Space overhead negligible
= Way partitioning for each segment

- Program phase detection overhead
= Basic block vector tracking

- For small cache sizes, evaluation stage can

Increase execution time
s <1 % on average, 5 % maximum

MICRO-46, 2013



T

Limitations
- Scalability

s Fine-grained barriers would mean smaller intervals

- Limited exploration of solution space

= One preferred thread at a time

= The benefits of high imbalance makes the scheme
practical
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Conclusion

» Simple runtime partitioning for balanced
data-parallel programs

» Effective cache utilization and balanced
progress achieved through

A. High Imbalance in partitions and
B. Prioritizing each thread in turn

- High imbalance allows un-preferred threads
to benefit from the large preferred partition
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Thank You!

Questions...
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Injecting Extra Imbalance

Long RD accesses not served
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Effect of Over-allocation
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- Benefits to preferred thread saturate at 14 ways
- Benetfits to un-preferred thread increase as allocation falls
- Hits for un-preferred thread are in preferred thread partition
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Adapting to Phase Changes

- Changes in program phase need to be
identified to trigger evaluation

- Per-thread binary basic block vectors are
used to identify the basic blocks touched in
each interval

- Hamming distance between the BBVs of
current and last intervals are compared to
identify phase changes
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Considering Unpartitioned Cache

- Time spent in various imbalance
configurations for runs showing benefits of

partiioning
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Round-robin vs. Critical-thread

- Prioritize the critical thread instead of using round robin

- No significant difference — Accelerating critical thread has
the same effect as giving each thread a fair share
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