
Imbalanced Cache Partitioning
for Balanced Data-Parallel
Programs

Abhisek Pan & Vijay S. Pai
Electrical and Computer Engineering
Purdue University
MICRO-46, 2013

Motivation
• Last level cache partitioning heavily studied

for multiprogramming workloads
• Multithreading = multiprogramming
▫  All threads have to progress equally
▫  Pure throughput maximization is not enough

• Data-parallel threads are similar to each other in
their data access patterns

• However equal allocation => suboptimal cache
utilization

2

MICRO-46, 2013

Motivation
• Last level cache partitioning heavily studied

for multiprogramming workloads
• Multithreading = multiprogramming
▫  All threads have to progress equally
▫  Pure throughput maximization is not enough

• Data-parallel threads are similar to each other in
their data access patterns

• However equal allocation => suboptimal cache
utilization

3

MICRO-46, 2013

Balanced threads need highly imbalanced partitions

Contributions
• Shared LLC partitioning for balanced data-

parallel applications

• Increasing allocation for one thread at a
time improves utilization

• Prioritizing each thread in turn ensures
balanced progress

• 17% drop in miss rate, 8% drop in execution
time on average for 4-core 8MB cache

• Negligible overheads

4

MICRO-46, 2013

Outline
• Motivation
• Contributions
• Background
• Memory Reuse Behavior of Threads
• Proposed Scheme
• Evaluation
• Overheads & Limitations
• Conclusion

5

MICRO-46, 2013

Way-partitioning
• N-way set-associative cache = > each set

has N ways or blocks
• Unpartitioned cache
▫  Least recently used entry among all ways replaced on a

miss
▫  Thread-agnostic LRU

• Way-partitioning
▫  Each way is owned by one core at a time
▫  On a miss, a core replaces the LRU entry among the

ways owned by it
▫  No restriction on access, only on replacement

6

MICRO-46, 2013

• Miss-rate vs. ways in a single set
• Each thread considered in isolation

7

MICRO-46, 2013

Per-thread Miss Rate Curves

0.
0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

14
.0

16
.0

18
.0

Reuse Distance

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Thread 0
Thread 1
Thread 2
Thread 3

M
is

s R
at

e

Ways

working set 1

working set 2

• Miss-rate vs. ways in a single set
• Each thread considered in isolation

8

MICRO-46, 2013

Per-thread Miss Rate Curves

0.
0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

14
.0

16
.0

18
.0

Reuse Distance

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Thread 0
Thread 1
Thread 2
Thread 3

M
is

s R
at

e

Ways

working set 1

working set 2

Inefficient
Allocation!

Symmetric Memory Access

9

MICRO-46, 2013

• Miss-curves symmetric
across threads

•  Seen for all
benchmarks & cache
sizes

Art, 212 sets Blackscholes, 29 sets

Fluidanimate, 214 sets

0.
0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

14
.0

16
.0

18
.0

20
.0

22
.0

24
.0

26
.0

Reuse Distance

0.0

0.2

0.4

0.6

0.8

1.0
M

is
s

R
at

e

Thread 0
Thread 1
Thread 2
Thread 3

Ways

M
is

s R
at

e

0.
0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

14
.0

16
.0

18
.0

Reuse Distance

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Thread 0
Thread 1
Thread 2
Thread 3

Ways

M
is

s R
at

e

0.
0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

14
.0

16
.0

18
.0

20
.0

22
.0

24
.0

Reuse Distance

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Thread 0
Thread 1
Thread 2
Thread 3

Ways

M
is

s R
at

e

Miss
Rate

0 8 32 Ways 8

0 8 32

32 0

- +

WS too small Improvement
opportunity

WS too large

Utilization through Imbalance

•  32 way cache, 4 threads –
default allocation = 8 ways /
thread

•  Prioritize one thread at a time
•  Vary preferred thread identity

10

MICRO-46, 2013

Miss
Rate

0 8 32 Ways 8

0 8 32

32 0

- +

WS too small Improvement
opportunity

WS too large

Utilization through Imbalance

•  32 way cache, 4 threads –
default allocation = 8 ways /
thread

•  Prioritize one thread at a time
•  Vary preferred thread identity

11

MICRO-46, 2013

Imbalance in partitions benefits the preferred thread

High Imbalance & Unpreferred threads

• Each thread switches between preferred
and un-preferred

• Unpreferred thread data remains in
preferred partition

• Continues to benefit un-preferred thread
even as its partition shrinks

• Imbalance magnifies benefits by reducing
pressure on preferred partition

12

MICRO-46, 2013

High Imbalance & Unpreferred threads

• Each thread switches between preferred
and un-preferred

• Unpreferred thread data remains in
preferred partition

• Continues to benefit un-preferred thread
even as its partition shrinks

• Imbalance magnifies benefits by reducing
pressure on preferred partition

13

MICRO-46, 2013

Large preferred partition benefits unpreferred threads too

Proposed Strategy
• Default allocation is inefficient
• Allocate extra ways to a single thread by

equally penalizing all other threads
• Select the preferred thread in round-robin

manner
▫  Ensure balanced progress

• Allocation changes at pre-set execution intervals

14

MICRO-46, 2013

Two-Stage Partitioning
• Evaluation Stage
▫  Triggers at the start of a new program phase
▫  Divide the cache sets into equal-sized segments
▫  Each segment is partitioned into a different level of

imbalance
▫  32 way cache shared among 4 cores – configurations

from 8-8-8-8 -> 29-1-1-1
▫  Each core is prioritized in turn
▫  Configuration with least number of misses chosen

15

MICRO-46, 2013

Evaluation Stage Cache

16

MICRO-46, 2013

Thread 1 Thread 2 Thread 3 Thread 4

Ways

Se
gm

en
ts

1
2
3
4
5
6
7
8

•  Each segment has multiple sets
•  Each thread becomes the preferred thread in turn

Evaluation Stage Cache

17

MICRO-46, 2013

Thread 1 Thread 2 Thread 3 Thread 4

Ways

Se
gm

en
ts

1
2
3
4
5
6
7
8

•  Each segment has multiple sets
•  Each thread becomes the preferred thread in turn

Capture effects of imbalance on preferred and unpreferred threads

Considering Unpartitioned Cache
• An unpartitioned (thread-agnostic LRU)

segment included in evaluation

• Replace a low-imbalance configuration

• Benefits of partitioning are obtained through high
levels of imbalance

18

MICRO-46, 2013

Unpartitioned Segment

19

MICRO-46, 2013

Thread 1 Thread 2 Thread 3 Thread 4

Ways

Se
gm

en
ts

1
2
3
4
5
6
7
8

No partitions

Stable Stage
• Maintain the chosen configuration till the

next program phase change

• Choose preferred thread in round-robin
manner

• Basic-block vector tracking used to identify
changes in program phase (based on
previous work)

20

MICRO-46, 2013

Evaluation Framework
• Simulator: Simics-GEMS
• Target: 4-core CMP with 32 way shared L2

cache, and 2 way private L1 caches
▫  1 thread per core, 64 byte line size, LRU replacement

• Workload:
▫  9 data-parallel workloads
▫  Mix of parsec (pthread build) and SPEC OMP suite
▫  Parsec - Blackscholes, Canneal, Fluidanimate,

Streamcluster, Swaptions
▫  SPEC OMP – Art, Equake, Swim, Wupwise

21

MICRO-46, 2013

Baselines
• Unpartitioned cache (thread-agnostic LRU)
• Statically equi-partitioned cache
• A CPI-based adaptive partitioning scheme

(Muralidhara et al., IPDPS 2010)
▫  Starts with equal partition
▫  Proportional partitioning (ways proportional to

CPI)
▫  Store <ways, CPI> to build a runtime model to

predict CPI variations with change in allocation
▫  Accelerate critical thread

22

MICRO-46, 2013

1.E+03'

1.E+04'

1.E+05'

1.E+06'

1.E+07'

1.E+08'

1.E+09'

6' 7' 8' 9' 10' 11' 12' 13' 14' 15' 16' 17' 18'

M
is
se
s%

Set%Bits%

Art' Blackscholes' Canneal' Equake' Fluidanimate'

Streamcluster' SwapFons' Swim' Wupwise'

Cache&Size&(Bytes)&

M
is
se
s&

128K& 256K& 512K& &1M& &2M& &4M& &8M& 16M& 32M& 64M& 128M& 256M& 512M&

Misses vs size

23

MICRO-46, 2013

4-core 32-way cache with equal partitions

Results
• Benefits of partitioning strongly tied to

cache size

• Partitioning beneficial only when per-
thread working set is between the default
allocation and the cache capacity

• Proposed method outperforms the baselines
where there is potential for benefit

24

MICRO-46, 2013

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

Comparison with Unpartitioned:
8 MB cache, 4 cores, 32 ways

25

MICRO-46, 2013

M
is

se
s

Ex
ec

ut
io

n
Ti

m
e

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

Comparison with Unpartitioned:
32 MB cache, 4 cores, 32 ways

26

MICRO-46, 2013

M
is

se
s

Ex
ec

ut
io

n
Ti

m
e

30 15 1.6

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

Comparison with Unpartitioned:
128 MB cache, 4 cores, 32 ways

27

MICRO-46, 2013

M
is

se
s

Ex
ec

ut
io

n
Ti

m
e

Across the Board
• Outperforms the CPI-based in most cases where

there is potential for benefit
▫  Proportional partitioning generates data points near the

default allocation
▫  From these starting points the search fails to find the

high-utility (high-imbalance) configurations

• No partitioning is best in some cases (Equake)
▫  Constructive interference
▫  Proposed scheme chooses global LRU appropriately
▫  Worst-case 5% increase in time due to evaluation

28

MICRO-46, 2013

Overheads
• Space overhead negligible
▫  Way partitioning for each segment

• Program phase detection overhead
▫  Basic block vector tracking

• For small cache sizes, evaluation stage can
increase execution time
▫  <1 % on average, 5 % maximum

29

MICRO-46, 2013

Limitations
• Scalability
▫  Fine-grained barriers would mean smaller intervals

• Limited exploration of solution space
▫  One preferred thread at a time
▫  The benefits of high imbalance makes the scheme

practical

30

MICRO-46, 2013

Conclusion
• Simple runtime partitioning for balanced

data-parallel programs
• Effective cache utilization and balanced

progress achieved through
 A. High Imbalance in partitions and
 B. Prioritizing each thread in turn

• High imbalance allows un-preferred threads
to benefit from the large preferred partition

31

MICRO-46, 2013

Thank You!

32

MICRO-46, 2013

Questions…

Injecting Extra Imbalance

•  Over-allocation in
preferred thread
protects long
distance accesses of
unpreferred thread

33

MICRO-46, 2013

Long RD accesses not served
by shrinking partition

Fr
eq

ue
nc

y

8 16 0
Ways/ SSRD

Fr
eq

ue
nc

y
8 16 0

Ways/ SSRD

Fr
eq

ue
nc

y

8 16 0
Ways/ SSRD

Fr
eq

ue
nc

y

8 16 0
Ways/ SSRD

Long RD accesses are protected
in preferred partition

Hits Misses

Extra
Ways

T1 (+) T2 (-)

T2 (--) T1 (++)

Effect of Over-allocation

•  Benefits to preferred thread saturate at 14 ways
•  Benefits to un-preferred thread increase as allocation falls
•  Hits for un-preferred thread are in preferred thread partition

34

MICRO-46, 2013
8 7 6 5 4 3 2 1

Allocation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
ef

er
en

ce
s

⇥107

Miss
Private Local Hit

Private Foreign Hit
Shared Local Hit

Shared Foreign Hit

Thread in preferred state Thread in un-preferred state

8 11 14 17 20 23 26 29
Allocation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ef

er
en

ce
s

⇥107
Miss
Private Self-Hit
Private Foreign Hit

Shared Self-Hit
Shared Foreign Hit

Adapting to Phase Changes
• Changes in program phase need to be

identified to trigger evaluation
• Per-thread binary basic block vectors are

used to identify the basic blocks touched in
each interval

•  Hamming distance between the BBVs of
current and last intervals are compared to
identify phase changes

35

MICRO-46, 2013

1.1# 3# 0.8#
7.6# 3.8# 6.5#

53.9#

23.41#

0#
10#
20#
30#
40#
50#
60#

8-
8-
8-
8#

11
-7
-7
-7
#

14
-6
-6
-6
#

17
-5
-5
-5
#

20
-4
-4
-4
#

23
-3
-3
-3
#

26
-2
-2
-2
#

29
-1
-1
-1
#

Ti
m
e#
in
#P
er
ce
nt
#

Alloca;ons#

Considering Unpartitioned Cache
• Time spent in various imbalance

configurations for runs showing benefits of
partitioning

36

MICRO-46, 2013

Round-robin vs. Critical-thread
•  Prioritize the critical thread instead of using round robin
•  No significant difference – Accelerating critical thread has

the same effect as giving each thread a fair share

37

MICRO-46, 2013

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Ar
t"

Bl
ac
ks
ch
ol
es
"

Ca
nn
ea
l"

Eq
ua
ke
"

Fl
ui
da
ni
m
at
e"

St
re
am

clu
st
er
"

Sw
ap
Ao
ns
"

Sw
im
"

W
up
w
ise
"

Normalized"ExecuAon"Time" Normalized"Misses"

Performance of critical-thread normalized to round-robin

