
0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

Imbalanced*Cache*Par//oning*for*
Balanced*Data7Parallel*Programs*

Abhisek*Pan*&*Vijay*S.*Pai*

Contributions
• Shared last-level cache partitioning for balanced

data-parallel applications
• Balanced allocation is suboptimal for balanced

programs
•  Increasing allocation for one thread at a time

improves utilization
• High imbalance helps both preferred and un-

preferred threads
!  Preferred thread benefits because working set
now fits into partition
!  Un-preferred threads benefit by using the data
left behind in the preferred partition
• Prioritizing each thread in turn ensures balanced

progress
• 17% drop in miss rate, 8% drop in execution time

on average for 4-core 8MB cache
• Negligible overheads

Motivation
Last level cache partitioning heavily studied for
multiprogramming workloads
Multithreading different than multiprogramming
!  All threads have to progress equally
!  Pure throughput maximization is not enough
!  Data-parallel threads are similar to each other in
their data access patterns

Method
2-Stage Partitioning

Evaluation
4-core CMP with 32 way shared L2, 9 data-parallel
workloads from PARSEC AND SPEC OMP suites

Baselines
!  Compared to a statically equi-partitioned cache
and a CPI-based adaptive partitioning scheme
!  Misses and execution time normalized to an un-
partitioned cache

Overheads
!  Per-segment way partitioning
and counters

!  Program phase detection

!  Evaluation stage overhead for
small cache (1 % ave., 5 % max.)

Conclusion
Effective cache utilization and
balanced progress for data-
parallel applications through:
A. High Imbalance in partitions

and
B. Prioritizing each thread in turn

Acknowledgements
Funded by: NSF (CNS-0751153,
CNS-1117726, & OCI-1216809)
& the DOE (DE-
FC02-12ER26104)

Thanks to: T.N. Vijaykumar,
Malek Musleh

0.
0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

14
.0

16
.0

18
.0

Reuse Distance

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Thread 0
Thread 1
Thread 2
Thread 3

M
is
s*
Ra

te
*

Ways* Inefficient*
Alloca/on!*

working*set*2*

working*set*2*

Only way to improve utilization is through
imbalance in allocation

Preferred thread
benefits since
increased allocation
covers working set

Un-preferred thread
benefits from data
remaining in preferred
partition

Evaluation Stage
!  Triggers at the start of a new program phase
!  Divide the cache sets into equal-sized segment
!  Each segment with a different level of imbalance
!  A segment for un-partitioned cache
!  Each core is prioritized in turn
!  Select configuration with least number of misses

Stable Stage
!  Maintain the chosen configuration till the next

program phase change
!  Choose preferred thread in round-robin manner

No partitions Thread 1 Thread 2 Thread 3 Thread 4

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

Sw
ap
-o
ns
"

Bla
ck
sc
ho
les
"

Ar
t"

Str
ea
mc
lus
te
r"

Ca
nn
ea
l"

Flu
ida
nim

ate
"

Eq
ua
ke
"

Sw
im
"

W
up
wi
se
"

STATICEEQ" CPI" IMBERR"

128 MB

32 MB

Misses Execution time

Good!*No*effect!*

