Imbalanced Cache Partitioning for

PURDUE Balanced Data.allel Programs
Abhisek Pan & Vijay S. Pai

Contributions Motivation

» Shared last-level cache partitioning for balanced Last level cache partitioning heavily studied for
data-parallel applications multiprogramming workloads

- Balanced allocation is suboptimal for balanced Multithreading different than multiprogramming
programs » All threads have to progress equally

- Increasing allocation for one thread at a time » Pure throughput maximization is not enough
improves utilization » Data-parallel threads are similar to each other in

- High imbalance helps both preferred and un- their data access patterns

preferred threads Only way to improve utilization is through

> Pr_efe_rred thr_egd benefits because working set imbalance in allocation
now fits into partition L0 |

» Un-preferred threads benefit by using the data \ workingset2 |xx mea|| Preferred thread

0.8 >—>» Thread 2

left behind in the preferred partition ' / —— Treadll benefits since
’

Cere . o working set 2| . -
e Prioritizing each thread in turn ensures balanced ol increased allocation
progress . ke covers working set
. F
e 17% drop in miss rate, 8% drop in execution time o e e

on average for 4-core 8MB cache $ 9 K_o/«ﬁ/s" ¢ & Un-preferred thread
. Negligible overheads ways [nefficient penefits from data

1 I _ .
< Allocation! ramaining in preferred
No effect! Good! partition

Miss Rate

Method Evaluation
e 4-core CMP with 32 way shared L2, 9 data-parallel
2-Stage Partitioning workloads from PARSEC AND SPEC OMP suites
Baselines

» Compared to a statically equi-partitioned cache
and a CPIl-based adaptive partitioning scheme

» Misses and execution time normalized to an un-
partitioned cache

Misses Execution time

B Thread 1 B Thread 2 L] Thread 3B Thread 4[] No partitions

B STATIC-EQ ECPI IMB-RR B STATIC-EQ ECPI IMB-RR
1.2 1.2

Evaluation Stage g ;
» Triggers at the start of a new program phase 0s I I I I I I o I I I I I I I
» Divide the cache sets into equal-sized segment 1
RO AR P @7”& & <.,$\® & & \(\0\& v o")‘é & .@7"& & <.,$\® &
& Q}a@é‘ ?,@& & S € o o &S & o

» Each segment with a different level of imbalance

» A segment for un-partitioned cache
> Each core is prioritized in turn 32 MB

» Select configuration with least number of misses) STATICEQ MCPI S VA) msmncea WCPl A

1
0.8 0.8
Stable S
table Stage
0.2 0.2
& & o &7} SN RS S\G’Q/ @ & o &?} 32 o’z\’& & S\c’z
o SR S P\ 3 & & ¢ 9T 8
L NG Q L NG N

» Maintain the chosen configuration till the next : :
program phase change S & T
» Choose preferred thread in round-robin manner 128 MB

=
=

o

3
O
o

o
& o - A 5 &

=

> 5
& ,«00*\
& Q &
& G
<X N *

Overheads Conclusion Acknowledgements

Effective cache utilization and Funded by: NSF (CNS-0751153,

palanced progress for data- CNS-1117726, & OCI-1216809)
parailiel applications tnrougn. & the DOE (DE_

» Program phase detection A. I;rl]gdh Imbalance in partitions FC02-12ER26104)
B. Prioritizing each thread in turn Thanks to: T.N. Vijaykumar,
Malek Musleh

» Per-segment way partitioning
and counters

» Evaluation stage overhead for
small cache (1 % ave., 5 % max.)

