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Contributions Motivation

» Shared last-level cache partitioning for balanced Last level cache partitioning heavily studied for
data-parallel applications multiprogramming workloads

- Balanced allocation is suboptimal for balanced Multithreading different than multiprogramming
programs » All threads have to progress equally

- Increasing allocation for one thread at a time » Pure throughput maximization is not enough
improves utilization » Data-parallel threads are similar to each other in

- High imbalance helps both preferred and un- their data access patterns
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Method Evaluation
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2-Stage Partitioning workloads from PARSEC AND SPEC OMP suites
Baselines

» Compared to a statically equi-partitioned cache
and a CPIl-based adaptive partitioning scheme

» Misses and execution time normalized to an un-
partitioned cache
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» Each segment with a different level of imbalance

» A segment for un-partitioned cache
> Each core is prioritized in turn 32 MB
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» Maintain the chosen configuration till the next : :
program phase change S & T
» Choose preferred thread in round-robin manner 128 MB
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