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  LRU keeps blocks in a recency stack 

 n-way cache, 0 is MRU, n-1 is LRU 
  When a block is inserted or promoted (used) it 

goes to the MRU position 
 Not always the best choice 

  Instead, let’s use the blocks’ former position to 
indicate its new position 
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Searching a Large Design Space 
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old new 

  We want to develop a new transition graph 

  For 16-way, there are > 300 trillion 
possibilities 

  So we use a genetic algorithm to search them 
 Fitness function is estimate of speedup 



PseudoLRU instead of LRU 

  This idea works just as well for tree-based 
PseudoLRU 

  Use set-dueling to dynamically choose between 
policies 

  Replacement policy consumes < 1 bit per block 
  Performance comparable to state-of-the-art 

 5.6% speedup over LRU on SPEC CPU 2006 
 15.6% on a memory-intensive subset 
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