
Insertion and Promotion for Tree-Based 
PseudoLRU Last-Level Caches 

  Daniel A. Jiménez, Texas A&M University 
  LRU keeps blocks in a recency stack 

 n-way cache, 0 is MRU, n-1 is LRU 
  When a block is inserted or promoted (used) it 

goes to the MRU position 
 Not always the best choice 

  Instead, let’s use the blocks’ former position to 
indicate its new position 

1 



Searching a Large Design Space 

2 

old new 

  We want to develop a new transition graph 

  For 16-way, there are > 300 trillion 
possibilities 

  So we use a genetic algorithm to search them 
 Fitness function is estimate of speedup 



PseudoLRU instead of LRU 

  This idea works just as well for tree-based 
PseudoLRU 

  Use set-dueling to dynamically choose between 
policies 

  Replacement policy consumes < 1 bit per block 
  Performance comparable to state-of-the-art 

 5.6% speedup over LRU on SPEC CPU 2006 
 15.6% on a memory-intensive subset 

3 


	session1Apaper1
	session1Apaper2
	session1Apaper3
	session1Bpaper1
	session1Bpaper2
	session1Bpaper3
	session2Apaper1
	session2Apaper2
	session2Apaper3
	session2Apaper4
	session2Bpaper1
	session2Bpaper2
	Blank Template Slide
	Slide 2
	Slide 3

	session2Bpaper3
	session2Bpaper4
	session3Apaper1
	session3Apaper2
	session3Apaper3
	session3Bpaper1
	session3Bpaper2
	session3Bpaper3
	session4Apaper1
	session4Apaper2
	session4Apaper3
	session4Bpaper1
	session4Bpaper2
	session4Bpaper3
	session5Apaper1
	session5Apaper2
	session5Apaper3
	session5Bpaper1
	session5Bpaper2
	session5Bpaper3
	session6Apaper1
	session6Apaper2
	session6Bpaper1
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	How to Turn Data Updates Into Permanent Records?
	How to Turn Data Updates Into Permanent Records?
	How to Turn Data Updates Into Permanent Records?
	How to Turn Data Updates Into Permanent Records?
	Slide Number 9

	session6Bpaper2
	session7paper1
	session7paper2
	session7paper3

