
SHIFT !
Shared History Instruction Fetch !
for Lean-Core Server Processors"

Cansu Kaynak, Boris Grot, Babak Falsafi"

Instruction Fetch Stalls in Servers"

Major performance and throughput bottleneck"

Traditional and emerging server apps:"
•  Deep software stacks"
•  Multi-MB instruction working sets"
"
Instruction fetch stalls:"
•  Account for up to 60% of execution time"
•  Cause severe core underutilization " Operating System"

Web Server" DBMS"

Scripting"

Libraries"

2"

Mitigating Instruction Fetch Stalls"
Next-Line Prefetcher:"
•  Cannot predict discontinuities"
"
Temporal Streaming:"
•  Records & replays recurring "
"I-Cache access sequences"

•  State-of-the-art: PIF"
"

Proactive Instruction Fetch (PIF) [Ferdman’11]"
•  Can predict nearly all I-Cache misses"
•  … at cost of ~200KB per-core history"
"
" 3"

1"
1.1"
1.2"
1.3"
1.4"
1.5"

Sp
ee

du
p"

NextLine" PIF"

Temporal streaming is effective, but incurs prohibitive overhead"

Overhead of Temporal Streaming"

4"

This Work: Practical & Effective Temporal Streaming"

e.g., Intel Xeon, IBM Power"
! High performance"
! Negligible area overhead"

e.g., ARM Cortex, Tilera"
! High performance"
"  Significant area overhead"

Shared History Instruction Fetch"
Observation: "
–  Cores executing same app exhibit same control flow"
–  Significant overlap between temporal streams in history"
!

Approach:"
–  History sharing across cores running common app"
–  Virtualized history for flexibility"

"
Compared to state-of-the-art:"
–  98% of performance with 14x less storage"
–  Relative area overhead: 70% # 5% for leanest core"

5"

Outline"
•  Introduction"
•  Temporal Streaming"
–  Background"
–  Impracticality"

•  Instruction History Commonality"
•  Shared History Instruction Fetch"
•  Evaluation Highlights"
•  Conclusion"

6"

Temporal Streaming Basics"
search()"

index_lookup()"

fn("

B"
C"

A"

D" Y"
Z"

X"

I-cache "
blocks"

 . . ."I-Cache Access
Sequence:"

Time"
 . . ."X Y" Z"A C DC . . ."X Y" Z"A C DC

“EPFL”"“MICRO”"

Recurring control flow # Recurring temporal streams"
7"

X Y" Z"C DC

Exploiting Temporal Streams"
State-of-the-art: Proactive Instruction Fetch [Ferdman’11]"

1.  Record sequences of accesses"
2.  Locate latest occurrence of a sequence"
3.  Replay old sequence as prediction"
"

Stream" I-Cache Hits"

Time"

How much storage is required to capture these streams?"

 . . ."X Y" Z"A C DC A . . ."X Y" Z"C DC . . ."

8"

Stable control flow & deep software stack "
Many long temporal streams"

In
str

uc
tio

n
M

iss
 C

ov
er

ag
e"

History Storage"

Streaming Effectiveness vs. Storage Overhead"

More history # More misses eliminated"

Next-Line"

Stream History:
~16KB per core"

Proportional to instruction working set"

90%"

35%"

100%"

55%"

Stream History:
~200KB per core"

9"

inf"

Cost of Temporal Streaming"

Conventional Fat Cores"

Emerging Lean Cores"

•  e.g., Intel Xeon, IBM Power"
•  Core area much larger than history"
•  4% of Xeon core"

•  e.g., ARM Cortex, Tilera"
•  History storage approaches core area"
•  70% of Cortex A8 core"

Instruction history size is function of instruction working set"
–  Independent of core type!"

Need for effective & low-overhead temporal streaming"
10"

Reducing Temporal Streaming Overhead"

Less history storage per core:"
" Much less coverage & performance"
"
"
Predictor Virtualization [Burcea’08]:"
Embed per-core instruction history into LLC"
"  Storage & write traffic scales with #cores"

11"
Need for a solution that preserves performance"

Outline"
•  Introduction"
•  Temporal Streaming"
•  Instruction History Commonality"
•  Shared History Instruction Fetch"
•  Evaluation Highlights"
•  Conclusion"

12"

Instruction History Commonality Across Cores"
•  Worker threads execute same types of requests from clients"
•  Cores exhibit common control flow"

Instruction histories overlap significantly"
13"

Quantifying Instruction History Commonality"

Y" Z" CA C X P" R" S"Instruction Stream History:"
Recorded by one core" M N

J"New Instruction Stream:"
Observed by other cores"

>90% of I-cache accesses in common streams"

D

A C

 . . ." . . ."

 . . ." K"Y" Z" CX D . . ."A C

Common Stream"
= 7 Addresses"

14"

Outline"
•  Introduction"
•  Temporal Streaming"
•  Instruction History Commonality"
•  Shared History Instruction Fetch"
•  Evaluation Highlights"
•  Conclusion"

15"

Shared History Instruction Fetch (SHIFT)"

•  Single shared history across cores running common app"
•  One core picked at random generates history"
•  All cores replay shared history for streaming"
"

16"

Replay"Replay"

Shared Instruction History Storage"

17"

History Buffer"
…"…" …"

Index"

Recording Temporal Streams"

History Buffer"

Index"

…"…"

Retired Instructions"
AHistory Generator"

…" A"

A C X . . ." . . ."Y"

A"
C"

Y"
X"

A" C" X" Y"

18"

Replaying Temporal Streams"

History Buffer"

Index"

…"…" …"

A"
C"

Y"
X"

A" C" X" Y"

Miss"

A"
Stream

 Read"

19"

C" X" Y"

A"

…
"

Virtualizing SHIFT"
•  Shared instruction history:"
–  Minimizes aggregate storage requirements & history writes "
–  Allows embedding shared history into LLC [Burcea’08]"

Shared history allows for history virtualization"

LLC Tags" LLC Data"
In

de
x

Pt
rs
"

History"
Buffer"
Entries"

20"

Outline"
•  Introduction"
•  Temporal Streaming"
•  Instruction History Commonality"
•  Shared History Instruction Fetch"
•  Evaluation Highlights"
•  Conclusion"

21"

Methodology"
•  FLEXUS full-system trace and OoO timing simulator [Wenisch’06]"

Traditional Server Apps:"
•  OLTP "
•  DSS"
•  Web Frontend"
Emerging Server Apps:"
•  Media Streaming"
•  Web Search"

Simulated System:"
•  16-core processor @ 2GHz"
•  Cortex A8- & A15-like core "
•  L1 (I and D): 32KB, 2-way"
•  NUCA L2: 8MB, 16-way"
•  On-Chip Network: Mesh "

•  Comparison w/ state-of-the-art instruction prefetcher:"
–  Proactive Instruction Fetch (PIF) [Ferdman’11]"

" 22"

0"

20"

40"

60"

80"

100"

1K" 2K" 4K" 8K" 16K" 32K" 64K" 128K" 256K" 512K" inf"

In
str

uc
tio

n
M

iss
 C

ov
er

ag
e

(%
)"

Aggregate History Buffer Size (# entries)"

SHIFT" PIF"

Miss Coverage Comparison"

SHIFT outperforms PIF for any given aggregate history size"
23"

PIF: 32K entries/core"SHIFT: 32K entries"
for all cores"

PIF (small): 2K entries/core"

Performance Comparison"

1"

1.1"

1.2"

1.3"

1.4"

1.5"

Sp
ee

du
p"

NextLine" PIF (small)" PIF" SHIFT"

SHIFT preserves 98% of PIF’s performance with 14X less storage"
24"

Conclusion"
•  I-misses are critical for server performance"

•  Temporal Streaming is effective"
–  But incurs prohibitive storage overhead"
"

•  Shared History Instruction Fetch"
–  Minimizes storage overhead by sharing history "
–  Preserves benefits of temporal streaming"

25"

Thanks!"

Questions?"

