

RAS-Directed Instruction Prefetching (RDIP)

Aasheesh Kolli*

Ali Saidi[†]

Thomas F. Wenisch*

* University of Michigan

[†] ARM

Why instruction prefetching?

- Poor I\$ behavior affects modern server workloads
 - [Spracklen '05][Ferdman '08] [Ferdman '11]
- Cache size constraints

 Prefetching necessary

Why another prefetcher?

- Next-2-line (N2L)
 - + Low overhead
 - Modest benefits, ineffective at discontinuities
- Proactive Instruction Fetch (PIF) [Ferdman '11]
 - + Best performing academic proposal
 - Storage overhead (> 200kB per core)
 - Design complexity

Our Goal: Low overhead, high accuracy prefetcher

Contributions

- I\$ misses program context correlation
- Program contexts are repetitive, predictable
- RAS succinctly captures program context

RAS-Directed Instruction Prefetching (RDIP)

RDIP achieves 11.5% increase in performance with only 64kB overhead

Outline

- Design overview
- RAS signature generation
- Timely prefetching
- Results
- Conclusions

RDIP design overview

- I\$ misses correlate to program context
- Program contexts are predictable
- RAS state represents program contexts

- 1. Represent program context using a RAS signature
- 2. Map cache misses to signatures
- 3. Prefetch upon next occurrence of signature

RDIP design challenges

- 1. Hash RAS contents to generate program context signatures
 - Challenge: Accurately represent program contexts
- 2. Record cache misses associated with signature in *Miss Table*
 - Challenge: Minimize storage
- 3. Prefetch upon signature change based on Miss Table
 - Challenge: Ensure timely prefetches

Outline

- Design overview
- RAS signature generation
- Timely prefetching
- Results
- Conclusions

Generating program context signatures

- Use contents of RAS to represent contexts
- Cannot use entire RAS need compact signatures
- Signatures must differentiate traversals up & down call stack

Call: XOR contents of RAS after push onto RAS, append 0

Return: XOR contents of RAS before pop from RAS, append 1

Example

Call: XOR contents of RAS after push onto RAS, append 0
Return: XOR contents of RAS before pop from RAS, append 1

Dynamic Instructions		RAS Signature	RAS
A:funcX{		(A)0	B
	B:funcY{	(A⊕B)0	Α
	}	(A⊕B)1	
	C:funcY{	(A⊕C)0	
1	}	(A⊕C)1	
}			

Outline

- Design overview
- RAS signature generation
- Timely prefetching
- Results
- Conclusions

Timely prefetching

- Miss Table stores signature-misses pairs
- Prefetches issued by looking up Miss Table
- If misses tagged with current signature? → Too late!

Mapping misses to previous signature → Timely prefetches

Issuing prefetch requests

Updating miss table

Misses tagged with previous signature → Timely prefetching! 14

Outline

- Design overview
- RAS signature generation
- Timely prefetching
- Results
- Conclusions

Experimental setup

- gem5
 - Core: 2GHz OoO, 8-wide commit, 16-entry RAS
 - I-Cache: 32KB/2-way/64B, 2 cycles
 - D-Cache: 64KB/2-way/64B, 3 cycles
 - L2: 2MB/8-way/64B, 24 cycles
- Workloads
 - gem5 gem5 running a spec benchmark (twolf)
 - HD-teraread Hadoop: Big data MapReduce job
 - HD-wdcnt Hadoop: Word count
 - ssj Tests Java performance in SPECpower

- MC-friendfeed Memcached: "Facebook"-like app
- MC-microblog Memcached: "Twitter"-like app

I\$ misses – signature correlation

Strong correlation between misses & signatures

RDIP practical design

- Summary of takeaways from sensitivity studies:
 - RAS size for signature generation → 4 top entries
 - Miss Table → 4K entries (4-way associative)
 - Entry size → 16B (compaction technique [Ferdman '11])
 - Max. 27 misses

Total Hardware Overhead = 64kB

Please see the paper for a detailed analysis

Coverage and erroneous prefetches

Coverage: PIF ~ RDIP > N2L Erroneous prefetches: PIF > N2L > RDIP

Performance

Performance increase: N2L 5%, PIF 13%, RDIP 11.5%, Ideal 16%

RDIP achieves 98% of the performance of PIF, with 3X storage reduction.

Conclusions

- I\$ misses program contexts RAS signatures
- RDIP performs comparably to PIF with 3X storage reduction

Thank You!

Questions?

