
RDIP: RAS-Directed Instruction Prefetching
Aasheesh Kolli, Thomas F. Wenisch (University of Michigan) and Ali Saidi (ARM)

1. The instruction fetch bottleneck

Performance gains of up to 50% and 16% on average

possible with an ideal I$.

© 2013 Aasheesh Kolli

Instruction cache performance continues to be a bottleneck for modern server workloads.

4. RDIP design and challenges

5. RAS signature generation

9. Simulation Methodology

10. Coverage and erroneous prefetches 11. Performance

• gem5 full system simulator

• Core parameters:

• Core: 2GHz OoO, 8-wide commit, 16-entry RAS
• I-Cache: 32KB/2-way/64B, 2 cycles
• D-Cache: 64KB/2-way/64B, 3 cycles
• L2: 2MB/8-way/64B, 24 cycles

• Workloads:

• gem5 – gem5 running a spec benchmark (twolf)
• HD-teraread – Hadoop: Big data search MapReduce job
• HD-wdcnt – Hadoop: Word count
• ssj – Tests Java performance in SPECpower
• MC-friendfeed – Memcached: “Facebook”-like app
• MC-microblog – Memcached: “Twitter”-like app

This work is partially supported by the National Science Foundation under grant CCF-0815457.

0.8

1

1.2

1.4

1.6

gem5 HD-teraread HD-wdcnt ssj MC-frinedfeed MC-microblog GMEAN

Re
la

ti
ve

 P
er

fo
rm

an
ce

No Prefetcher (NoP) Ideal

Constraints on I$ hit-latency and cycle time do not allow
for increasing cache capacity  Instruction prefetching

2. Why another instruction prefetcher?

Next-2-line (N2L) Proactive Instruction Fetch (PIF) [Ferdman ‘11]

Industry standard State-of-the-art academic proposal

+ Low overhead, implementability + Best performance

- Modest performance gains - High overhead (> 200kB), design complexity

3. Insights

Design steps Challenges
1. Use RAS signatures to represent program contexts Accurate representation

2. Map I$ misses to signature in Miss Table Minimize storage

3. Prefetch on next occurrence of signature Timely prefetching

Call: XOR contents of RAS after push onto RAS, append 0
Return: XOR contents of RAS before pop from RAS, append 1

Example:

A:funcX{

 B:funcY{

 }

 ….

 C:funcY{

 }

Dynamic Instructions RAS contents RAS signature

A

B A

B A

C A

C A

(A)0

(A⊕B)0

(A⊕B)1

(A⊕C)0

(A⊕C)1

• Same function called from different locations has different

signatures

• Large functions can be broken down into multiple contexts

• I$ misses correlate strongly to program context

• Program contexts are predictable

• RAS succinctly captures program context

6. Timely prefetching

S1

S2

S3

Execution
Stream Signature

Prefetch
Requests

Ti
m

e

Mapping I$ misses with corresponding signature  late prefetches.

Mapping I$ misses with preceding signature  timely prefetches

7. RDIP hardware summary

Push/Pop

RAS

Address

Overflows

⊕

Current
Signature

Previous

Signature

Lookup

Miss Table

L2$

Miss Buffer

Update

8. RDIP practical design
• RAS size for signature generation  4 top entries

• Miss Table  4k entries (4-way associative)

• Entry size  16B (compaction technique [Ferdman ‘11])

Total storage overhead: 64kB

0

50

100

150

200

250

300

N2L PIF RDIP N2L PIF RDIP N2L PIF RDIP N2L PIF RDIP N2L PIF RDIP N2L PIF RDIP

gem5 HD-teraread HD-wdcnt ssj MC-friendfeed MC-microblog

Pe
rc

en
ta

ge

Erroneous Prefetches Misses Prefetch Hits

Better Better

An ideal prefetcher tries to maximize coverage (def: prefetchHits over prefetchHits+misses)

 and minimize erroneous prefetches.

0.8

1

1.2

1.4

1.6

gem5 HD-teraread HD-wdcnt ssj MC-friendfeed MC-microblog GMEAN

Re
la

ti
ve

 P
er

fo
rm

an
ce

N2L PIF RDIP Ideal

Better

Coverage: PIF ~ RDIP > N2L
Erroneous prefetches: PIF > N2L > RDIP

Our goal: Build a low overhead, high accuracy prefetcher

Performance increase: N2L 5%, PIF 13%, RDIP 11.5%, Ideal 16%

12. Conclusion
In this work, we show the correlation that exists between I$ misses and program contexts and
develop a mechanism to use the RAS state to represent program contexts. Leveraging these
insights we develop a prefetching mechanism, RDIP. RDIP performs comparably to the state-of-
the-art prefetchers at one third storage costs and simpler design.

