

QUANTIFYING THE RELATIONSHIP BETWEEN THE POWER DELIVERY NETWORK AND ARCHITECTURAL POLICIES IN A 3D-STACKED MEMORY DEVICE

Manjunath Shevgoor, Niladrish Chatterjee, Rajeev Balasubramonian, Al Davis University of Utah

Jung-Sik Kim DRAM Design Team, Samsung Electronics Aniruddha N. Udipi ARM R&D

Cost of 3D-DRAM is critical for large scale adoption

Low-cost 3D-stacked DRAM has performance penalties stemming from power delivery constraints

Our goal: low-cost, high-performance 3D-DRAM

Outline

IR-drop background

- Quantify the effect of IR-Drop
- □ IR-drop aware memory controller
- IR-drop aware scheduling and data placement
- Evaluation

Background

- Only part of the supply voltage reaches the circuit elements
- This loss of Voltage over the Power Delivery Network (PDN) is called *IR -Drop*

IR Drop can lead to correctness issues

The Power Delivery Network

Grid of wires which connect power sources to the circuits

Integrated Circuit

Source: Sani R. Nassif, Power Grid Analysis Benchmarks

IR Drop in 3D DRAM

- 3D stacking increases current density Increased 'I'
- TSVs add resistance to the PDN increased 'R'
- Navigate 8 TSV layers to reach the top die

Static and Dynamic IR Drop

- Static IR-Drop
 - Static current loads
 - PDN is reduced to a network of resistances
- Dynamic IR-Drop
 - Considers circuit switching
 - Capacitive and inductive effects are considered
- Total noise of 75mV can be tolerated
- □ As a first step, this paper focuses on Static IR-Drop
 - Pessimistically assume a 75mV margin for static IR-drop

Reducing IR Drop

Reduce "I"

Control Activity on chip

Decreases Performance

- Current limiting constraints already exist
 DDR3 uses t_{FAW} and t_{RRD}
- Recent work on PCM (Hay et al.) using Power Tokens to limit PCM current draw
- These solutions use *Temporal Constraints* ... more is required to handle IR drop in 3D DRAM

Reducing IR Drop

□ Reduce "R"

- Make wires wider
- Add more VDD/VSS bumps

Increases Cost

Relationship between pin count and package cost

Source: Dong el al. Fabrication Cost Analysis and Cost-Aware Design Space Exploration for 3-D ICs

Background Summary

- Voltage drops across every PDN
- 3D DRAM has I and R
- Reducing I and R has cost and performance penalties

Explore architectural policies to manage IR DropCan provide high performance and low cost

- IR Drop is not uniform across the stack
 Different regions can support different activities
 Avoid being constrained by worst case IR Drop
- IR-Drop aware architectural policies
 - Memory Scheduling
 - Data Placement

IR-drop background

Quantify the effect of IR-Drop

- □ IR-drop aware memory controller
- □ IR-drop aware scheduling and data placement
- Evaluation

Cost optimized DRAM Layout

DRAM Layout – Spatial Dependence

VDD on M1 on Layer 9

• The TSV count is high enough to provide the necessary current and not suffer Electro-Migration

IR Drop Profile

- Figures illustrate IR Drop when all banks in the 3D stack are executing ACT
- IR Drop worsens as the distance from the source increases
- Spatial Constraints are clearly needed

IR Drop Aware Constraints

Quality of power delivery depends on location

Existing constraints are Temporal

Hence, augment with Spatial Constraints

IR-drop background

Quantify the effect of IR-Drop

IR-drop aware memory controller

- IR-drop aware scheduling and data placement
- Evaluation

Iso-IR Drop Regions

- IR Drop worsens as distance from TSVs increases
- IR Drop worsens as distance from C4 bumps increases
- To reduce complexity, we define activity constraints per region

Region Based Constraints

Region Based Constraints

Multi Region Constraints

Multi Region Constraints

Region based Read constraints

Constraint Type	Descriptio	n	Constraint for Region(s)	Num. Parallel Column Read units allowed
Top Region Reads		1-2 Reads allowed		
Bottom Region Reads		4 Reads allowed		
Two Region Constraints (Reads happening	No Reads in A At least one Read i No Reads in A At least one Read	_TOP in A_BOT _BOT in D_TOP	A_TOP and B_TOP A_BOT and B_BOT A_BOT and B_BOT C_TOP and D_TOP	2 8 8 1
At least one Rd in Top Regions		8 Reads allowed		
No Top Region Reads		1	6 Reads allow	ed

DRAM Currents

Symbol	Value (mA)	Description	Consumed By
I _{DD0}	66	One bank Activate to Precharge	Local Sense Amps, Row Decoders, and I/O Sense Amps
I _{DD4R}	235	Burst Read Current	Peripherals, Local Sense Amps, IO Sense Amps, Column Decoders
I _{DD4W}	171	Burst Write Current	Peripherals, IO Sense Amps, Column Decoders

Source: Micron Data Sheet for 4Gb x16 part

Read Based constraints

- To limit controller complexity, we define ACT, PRE and Write constraints in terms of Read
- The Read-Equivalent is the min. number of ACT/PRE/ WR that cause the same IR-Drop as the Read

Command	Read Equivalent
ACT	2
PRE	6
WR	1

- IR-drop background
- Quantify the effect of IR-Drop
- □ IR-drop aware memory controller

IR-drop aware scheduling and data placement

Evaluation

Controlling Starvation

As long as Bottom Regions are serving more than 8 Reads, Top Regions can never service a Read

Die Stack	At least one Rd in Top Regions	8 Reads allowed	
Wide	No Top Region	16 Reads	
Constraint	Reads	allowed	

Requests mapped to Top regions suffer

Prioritize Requests that are older than

N* Avg. Read Latency

(N is empirically determined to be 1.2 in our simulations)

Page Placement (Profiled)

- Profile applications to find highly accessed pages
- Map most accessed pages to the most IR Drop resistant regions (Bottom Regions)
- The profile is divided into 8 sections. The 4 most accessed sections are mapped to Bottom regions
- The rest are mapped to C_TOP, B_TOP, D_TOP, A_TOP, in that order

Page Placement (Dynamic)

- Recent page activity determines migration candidates
- Pages with highest total queuing delay are moved to bottom regions
- Using page access count to promote pages can starve threads
- Page access count is used to demote pages to top regions
- Page migration is limited by Migration Penalty (10k/ 15M cycles)

- IR-drop background
- Quantify the effect of IR-Drop
- □ IR-drop aware memory controller
- IR-drop aware scheduling and data placement
- Evaluation

Modeling Static IR Drop

Connections to external power source

- Current consumed by each block is assumed to be distributed evenly over the block
- Current sources are used to model the current consumption

Source: Sani R. Nassif, Power Grid Analysis Benchmarks

Methodology

- HMC based memory system
- Simics coupled with augmented USIMM
- SPEC CPU 2006 multi-programmed

CPU Configuration				
CPU	8-core Out-of-Order CMP, 3.2 GHz			
L2 Unified Last Level Cache	8MB/8-way, 10-cycle access			
Memory Configuration				
Total DRAM Capacity	8 GB in 1 3D stack			
DRAM Configuration	2 16-bit uplinks, 1 16-bit downlink @ 6.4 Gbps 32 banks/DRAM die, 16 vaults 8 DRAM dies/3D-stack tFAW honored on each die			

Effect of Starvation Control on IPC

Effect of EPP on IPC

Impact on DRAM Latency

Conclusions

- Multiple voltage noise sources we focus on static IR Drop in 3D DRAM
- Multiple ways to cope with IR Drop we focus on architectural policies – reduce cost and improve performance
- We construct simple region based constraints for the memory controller
- We introduce starvation and page placement policies
- The memory controller manages both spatial and temporal aspects – our low-cost PDN achieves performance that is very close to that of the Ideal PDN

Thank You

QUANTIFYING THE RELATIONSHIP BETWEEN THE POWER DELIVERY NETWORK AND ARCHITECTURAL POLICIES IN A 3D-STACKED MEMORY DEVICE

Manjunath Shevgoor, Niladrish Chatterjee, Rajeev Balasubramonian, Al Davis University of Utah

Jung-Sik Kim DRAM Design Team, Samsung Electronics Aniruddha N. Udipi ARM R&D