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3D-Stacked DRAM 
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!  3D-stacking is happening ! 

!  Cost of 3D-DRAM is critical for large scale adoption 

!   Low-cost 3D-stacked DRAM has performance  
    penalties stemming from power delivery constraints 

 

!  Our goal: low-cost, high-performance 3D-DRAM  

Source: 
micron.com 



Outline 
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!  IR-drop background  
!  Quantify the effect of IR-Drop 
!  IR-drop aware memory controller 
!  IR-drop aware scheduling and data placement 
!  Evaluation 



Background  
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•  Only part of the supply voltage reaches the circuit elements 
•  This loss of Voltage over the Power Delivery Network (PDN) 

is called IR -Drop 

IR Drop can lead to correctness issues 



The Power Delivery Network 
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!  Grid of wires which connect power sources to the 
circuits 

Source: Sani R. Nassif, Power Grid Analysis Benchmarks 

VDD  VSS 



•  3D stacking increases current density – Increased ‘I’ 
•  TSVs add resistance to the PDN – increased ‘R’ 
•  Navigate 8 TSV layers to reach the top die 

IR Drop in 3D DRAM  
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Static and Dynamic IR Drop 
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!  Static IR-Drop  
! Static current loads 
! PDN is reduced to a network of resistances 

!  Dynamic IR-Drop 
! Considers circuit switching 
! Capacitive and inductive effects are considered 

!  Total noise of 75mV can be tolerated 
!  As a first step, this paper focuses on Static IR-Drop 

! Pessimistically assume a 75mV margin for static IR-drop 



Reducing IR Drop 
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!  Reduce “I” 
! Control Activity on chip 
! Decreases Performance 

!  Current limiting constraints already exist 
! DDR3 uses tFAW and tRRD 

!  Recent work on PCM (Hay et al.) using Power Tokens to 
limit PCM current draw 

!  These solutions use Temporal Constraints … more is 
required to handle IR drop in 3D DRAM 

 



Reducing IR Drop 
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!  Reduce “R” 
! Make wires wider 
! Add more VDD/VSS bumps 
!  Increases Cost 

Relationship between pin 
count and package cost 
Source: Dong el al. Fabrication Cost Analysis 
and Cost-Aware Design Space Exploration 
for 3-D ICs 



Background Summary 
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!  Voltage drops across every PDN  
!  3D DRAM has I and R 
!  Reducing I and R has cost and performance 

penalties 

Explore architectural policies to manage IR Drop 
!  Can provide high performance and low cost 



Overview 
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!  IR Drop is not uniform across the stack 
! Different regions can support different activities 

!  Avoid being constrained by worst case IR Drop 

!  IR-Drop aware architectural policies 
! Memory Scheduling 
! Data Placement 



Outline 
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!  IR-drop background  
!  Quantify the effect of IR-Drop 

!  IR-drop aware memory controller 
!  IR-drop aware scheduling and data placement 
!  Evaluation 



Cost optimized DRAM Layout 
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DRAM Layout – Spatial Dependence 
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•  The TSV count is high enough to provide the necessary current and not suffer Electro-
Migration 



IR Drop Profile 
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•  Figures illustrate IR Drop when all banks in the 3D stack are executing ACT 
•  IR Drop worsens as the distance from the source increases 
•  Spatial Constraints are clearly needed 

Layer 2 Layer 3 Layer 4 Layer 5 

Layer 6 Layer 7 Layer 8 Layer 9 



IR Drop Aware Constraints 
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!  Quality of power delivery depends on location 

!  Existing constraints are Temporal 

!  Hence, augment with Spatial Constraints  



Outline 
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!  IR-drop background  
!  Quantify the effect of IR-Drop 
!  IR-drop aware memory controller 

!  IR-drop aware scheduling and data placement 
!  Evaluation 



Iso-IR Drop Regions 
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•  IR Drop worsens as distance from TSVs increases 
•  IR Drop worsens as distance from C4 bumps increases 
•  To reduce complexity, we define activity constraints per region 

A Banks B Banks C Banks D Banks 
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Region Based Constraints 

RD No Violations RD 
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Region Based Constraints 

RD Violation ! RD 
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Multi Region Constraints 

21 

RD No Violations 

RD 



Multi Region Constraints 
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RD Violation ! 

RD 
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Region based Read constraints 

At least one Rd in Top 
Regions 

8 Reads allowed 

No Top Region Reads 16 Reads allowed 

Top Region Reads 1-2 Reads allowed 
Bottom Region Reads 4 Reads allowed 



DRAM Currents 
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Symbol Value 
(mA) 

Description Consumed By 

IDD0 66 One bank 
Activate to 
Precharge 

Local Sense Amps, Row 
Decoders, and  I/O Sense 
Amps 

IDD4R 235 Burst Read 
Current 

Peripherals, Local Sense Amps, 
IO Sense Amps, Column 
Decoders 

IDD4W 171 Burst Write 
Current 

Peripherals, IO Sense Amps, 
Column Decoders 

Source: Micron Data Sheet for 4Gb x16 part 



Read Based constraints 
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!  To limit controller complexity, we define ACT, PRE 
and Write constraints in terms of Read 

!  The Read-Equivalent is the min. number of ACT/PRE/
WR that cause the same IR-Drop as the Read 

Command  Read Equivalent 

ACT 2 
PRE 6 
WR 1 



Outline 
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!  IR-drop background  
!  Quantify the effect of IR-Drop 
!  IR-drop aware memory controller 
!  IR-drop aware scheduling and data placement 

!  Evaluation 



Controlling Starvation 
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!  As long as Bottom Regions are serving more than 8 
Reads, Top Regions can never service a Read 

! Requests mapped to Top regions suffer 
!  Prioritize Requests that are older than  

N* Avg. Read Latency 
(N is empirically determined to be 1.2 in our simulations) 

 
Die Stack 

Wide 
Constraint 

At least one Rd 
in Top Regions 

8 Reads 
allowed 

No Top Region 
Reads 

16 Reads 
allowed 



Page Placement (Profiled) 
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!  Profile applications to find highly accessed pages 
!  Map most accessed pages to the most IR Drop 

resistant regions (Bottom Regions) 
!  The profile is divided into 8 sections. The 4 most 

accessed sections are mapped to Bottom regions 
!  The rest are mapped to  C_TOP, B_TOP, D_TOP, 

A_TOP, in that order 



Page Placement (Dynamic) 
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!  Recent page activity determines migration candidates 
!  Pages with highest total queuing delay are moved to 

bottom regions 
!  Using page access count to promote pages can starve 

threads 
!  Page access count is used to demote pages to top 

regions 
!  Page migration is limited by Migration Penalty (10k/

15M cycles) 



Outline 
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!  IR-drop background  
!  Quantify the effect of IR-Drop 
!  IR-drop aware memory controller 
!  IR-drop aware scheduling and data placement 
!  Evaluation 



Modeling Static IR Drop 
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•  Current consumed by  each block is assumed to be distributed evenly over the block 
•  Current sources are used to model the current consumption 

Source: Sani R. Nassif, Power Grid Analysis Benchmarks 



Methodology 
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!  HMC based memory system 
!  Simics coupled with augmented USIMM 

!  SPEC CPU 2006 multi-programmed 
CPU Configuration!

CPU % 8-core Out-of-Order CMP, 3.2 GHz%
L2 Unified Last Level Cache% 8MB/8-way, 10-cycle access%

Memory Configuration!
Total DRAM Capacity% 8 GB in 1 3D stack%
DRAM Configuration% 2 16-bit uplinks, 1 16-bit downlink 

@ 6.4 Gbps 
32 banks/DRAM die, 16 vaults 

8 DRAM dies/3D-stack 
tFAW%honored%on%each%die%



Effect of Starvation Control on IPC  
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4.6x 
worse 

1.6x  
worse 



Effect of EPP on IPC  
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Within 
1.2x of 
ideal 



Impact on DRAM Latency 
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PPP 55% 
reduction 

EPP 38% 
reduction 



Conclusions 
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!  Multiple voltage noise sources – we focus on static IR 
Drop in 3D DRAM 

!  Multiple ways to cope with IR Drop – we focus on 
architectural policies – reduce cost and improve 
performance  

!  We construct simple region based constraints for the 
memory controller 

!  We introduce starvation and page placement policies  
!  The memory controller manages both spatial and 

temporal aspects – our low-cost PDN achieves 
performance that is very close to that of the Ideal PDN 
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Thank You  
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