RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

Limited bandwidth

High energy

Carnegie Mellon University

Intel Pittsburgh
RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

- Forking
- Zeroing
- Checkpointing
- VM Cloning

Carnegie Mellon University

Intel Pittsburgh
RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

- Limited bandwidth
- High energy

Bulk Data Copy Data Initialization

Unnecessary Data Movement

Forking Zeroing Checkpointing VM Cloning

Carnegie Mellon University Intel Pittsburgh
RowClone: In-DRAM Bulk Copy & Initialization

Source Row

Destination Row

Row Buffer
RowClone: In-DRAM Bulk Copy & Initialization

Copy from source row to row buffer
RowClone: In-DRAM Bulk Copy & Initialization

Copy from source row to row buffer

Copy from row buffer to destination row
RowClone: In-DRAM Bulk Copy & Initialization

Copy from source row to row buffer

- Latency: 11x

Copy from row buffer to destination row

- Energy: 74x

Very few changes to DRAM
(0.01% increase in die area)
RowClone: In-DRAM Bulk Copy & Initialization

- End-to-end system design to exploit DRAM substrate
- Several applications that benefit from RowClone
RowClone: In-DRAM Bulk Copy & Initialization

- End-to-end system design to exploit DRAM substrate
- Several applications that benefit from RowClone

8-Core System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current Systems</th>
<th>RowClone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>DRAM Energy</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>