Motivation

USC Viterbi

School of Engineering

Ming Hsieh Department of Electrical Engineering

Warped Gates: Gating Aware Scheduling and Power Gating for GPGPUs

Mohammad Abdel-Majeed, Daniel Wong and Murali Annavaram

- GPGPU Execution units
 - · GPU targets application with thousands of threads.
 - Large number of execution units in the GPGPU.
 - Each unit has an INT and FP pipelines.
 - 32/SM in Fermi and 192/SM in Kepler.

Execution units burn massive leakage and dynamic power Why not power gate the execution units?

Scheduler greedily issues ready instructions (without considering instruction type)

- On average 16 warps are ready to execute any cycle
 - Good mix of INT and FP instructions are available each cycle
- INT/FP units turn ON/OFF rather rapidly due to greedy scheduling
 - Power gating needs many consecutive cycles of idleness
 - So no opportunity to power gate
- Power Gating regions
 - A: Detect Idle periods (no Gating)
 - **B**:Gating overhead is higher than savings (Power gated)
 - C:Cycles spent in this region will translate into savings

Give priority to same instruction type during scheduling

Change the scheduling order based on the instruction mix of the benchmark.

Supp

chitectura

GATES is able to increase the length of idle period but still not long enough to take advantage

- Idle periods are unable to go past break even time
 - Force idleness until break-even period past, once a unit goes idle and even if an instruction needs that unit
 - Performance Loss?
 - No because one can take advantage of other available resources and instruction mix

Conv_PG Gating Aware Scheduler I_Buffer V Dec_INST_INT_R Ready, Typ Dec_INST_FP_R Dec_INST <mark>SFU</mark> R V Dec_INST_LD_R Scoreboard

Simulation Setup

- GPGPU-Sim cycle accurate simulator.
- Fermi architecture
- 14 cycles BET, 3 cycles wakeup latency, 5 cycles idle detect

Benchmarks **GPGPU-Sim** over conventional PG simulator

Leakage power Reduction

Area overhead

Performance overhead

