Warped Gates: Gating Aware Scheduling and Power Gating for GPGPUs

Mohammad Abdel-Majeed, Daniel Wong and Murali Annavaram

Introduction

• GPGPU Execution units
 • GPU targets application with thousands of threads.
 • Large number of execution units in the GPGPU.
 • Each unit has an INT and FP pipelines.
 • 32/SM in Fermi and 192/SM in Kepler.

Motivation

• Scheduler greedily issues ready instructions (without considering instruction type)
 • On average 16 warps are ready to execute any cycle
 • Good mix of INT and FP instructions are available each cycle
 • INT/FP units turn ON/OFF rather rapidly due to greedy scheduling
 • Power gating needs many consecutive cycles of idleness
 • So no opportunity to power gate

• Give priority to same instruction type during scheduling
 • Change the scheduling order based on the instruction mix of the benchmark.

• Idle periods are unable to go past break even time
 • Force idleness until break-even period past, once a unit goes idle and even if an instruction needs that unit
 • Performance Loss?
 • No because one can take advantage of other available resources and instruction mix

GATES

• Need for GATES
 • INT/FP units turn ON/OFF rather rapidly due to greedy scheduling
 • Power gating needs many consecutive cycles of idleness
 • So no opportunity to power gate

• Power Gating regions
 • A: Detect Idle periods (no Gating)
 • B: Gating overhead is higher than savings (Power gated)
 • C: Cycles spent in this region will translate into savings

Simulation Setup

• GPGPU-Sim cycle accurate simulator.
• Fermi architecture
• 14 cycles BET, 3 cycles wakeup latency, 5 cycles idle detect

Results

18

Benchmarks
GPGPU-Sim simulator

Leakage power Reduction over conventional PG
1.5x

Area overhead
~0%

Performance overhead
1%

abdelmaj@usc.edu, wongdani@usc.edu, annavara@usc.edu