
Timothy G. Rogers1, Mike O’Connor2, Tor M. Aamodt1

1The University of British Columbia
2NVIDIA Research

Divergence-Aware Warp Scheduling

MICRO 2013 Davis, CA

Tim Rogers Divergence-Aware Warp Scheduling 2

Streaming Multiprocessor
Streaming Multiprocessor

Warp
Scheduler

Memory
Unit

L1D

GPU

W1 …W2

•  10000’s concurrent threads
•  Grouped into warps
•  Scheduler picks warp to issue each cycle

Main Memory
L2 cache

Threads

Warp …

Tim Rogers Divergence-Aware Warp Scheduling 3

Warp …

Main Memory

2 Types of Divergence

… Can waste memory
bandwidth

Memory Divergence

Branch Divergence

Effects
functional unit

utilization
Aware of
branch

divergence

if(…) {
 …

}

Threads

Warp … 1 0 10

Aware of
memory

divergence

AND
Focus on
improving

performance

Tim Rogers Divergence-Aware Warp Scheduling 4

Motivation

•  Transfer locality management from SW to HW

•  Software solutions:
•  Complicate programming
•  Not always performance portable
•  Not guaranteed to improve performance
•  Sometimes impossible

•  Improve performance of programs with memory divergence
•  Parallel irregular applications
•  Economically important (server computing, big data)

Tim Rogers Divergence-Aware Warp Scheduling 5

Programmability Case Study
Sparse Vector-Matrix Multiply

Divergence

Added
Complication

Dependent on
Warp Size

Parallel
Reduction

Explicit Scratchpad Use

2 versions from SHOC

Divergent Version

GPU-Optimized Version

Each thread
has locality

Tim Rogers Divergence-Aware Warp Scheduling 6

Previous Work
•  Scheduling used to capture intra-thread locality (MICRO 2012)

•  Proactive

•  Branch divergence aware

Reactive
•  Detects interference then throttles

Previous Work Divergence-Aware
Warp Scheduling

Predict and be Proactive

Adapt to branch divergence Unaware of branch divergence
•  All warps treated equally

Outperformed
by profiled

static throttling

Outperform
static

solution

Lost Locality Detected

W2

Warp
Scheduler

Memory
Unit

L1D

W1 …W3 WN
Go Go Stop Stop

1 0 1 1 0 0
Active
Mask

1 1 1 1 1 1
Active
Mask

Go Go

Case Study:
Divergent code
50% slowdown

Case Study:
Divergent code
<4% slowdown

Tim Rogers Divergence-Aware Warp Scheduling 7

Divergence-Aware
Warp Scheduling

How to be proactive

Adapt to branch divergence

•  Identify where locality exists
•  Limit the number of warps executing in high locality regions

•  Create cache footprint prediction in high locality regions
•  Account for number of active lanes to create per-warp

footprint prediction.
•  Change the prediction as branch divergence occurs.

Tim Rogers Divergence-Aware Warp Scheduling 8

Where is the locality?
•  Examine every load instruction in program

0

10

20

30

40

50

60

Static Load Instructions in GC workload

H
its

/M
is

se
s

PK
I

Lo
ad

 1

Lo
ad

 2

Lo
ad

 3

Lo
ad

 4

Lo
ad

 5

Lo
ad

 6

Lo
ad

 7

Lo
ad

 8

Lo
ad

 9

Lo
ad

 1
0

Lo
ad

 1
1

Lo
ad

 1
2

Lo
ad

 1
3

Locality Concentrated in
Loops

Loop

Tim Rogers Divergence-Aware Warp Scheduling 9

Locality In Loops Limit Study

0

0.2

0.4

0.6

0.8

1

Average

Line accessed this iteration

Line accessed last iteration

Other

Hits on data accessed in
immediately previous trip How much data should we keep around?

Fr
ac

tio
n

ca
ch

e
hi

ts
 in

 lo
op

s

Tim Rogers Divergence-Aware Warp Scheduling 10

DAWS Objectives

1.  Predict the amount of data accessed by each
warp in a loop iteration.

2.  Schedule warps in loops so that aggregate
predicted footprint does not exceed L1D.

Tim Rogers Divergence-Aware Warp Scheduling 11

Observations that enable prediction
•  Memory divergence in static instructions is predictable

•  Data touched by divergent loads dependent on active mask

Warp 0 Warp 1
…
load
…

Divergence

Divergence Warp

Main Memory

Main Memory Main Memory

Divergence

Both Used To
Create Cache

Footprint
Prediction

4 accesses
2 accesses

1 0 10
Warp

1 1 11

Tim Rogers Divergence-Aware Warp Scheduling 12

Online characterization to create cache footprint prediction

1.   Detect loops with locality

2.   Classify loads in the loop

3.   Compute footprint from active mask

Some loops have locality Some don’t
Limit

multithreading
here

while(…) {
 load 1
 …
 load 2

}

Diverged

Not Diverged

while(…) {
 load 1
 …
 load 2

}

Warp 0 1 1 1 1 1 1

Loop with locality

Loop with locality

Diverged

Not Diverged

4 accesses

1 access
+

Warp 0’s
Footprint
= 5 cache

lines

int C[]={0,64,96,128,160,160,192,224,256};
void sum_row_csr(float* A, …) {
 float sum = 0;
 int i =C[tid];

 while(i < C[tid+1]) {

 sum += A[i];

 ++i;

 }
…

Example Compressed Sparse Row Kernel

Time1 Time0 Time2

Cache
A[0]

A[64]
A[96]

A[128]

Cache
A[0]

A[64]
A[96]

A[128]

Cache
A[32]

A[160]
A[192]
A[224]

Warp0 1 1 1 1

2nd Iter.

Warp0 1 0 0 0

33rd Iter.

Warp1 0 1 1 1

1st Iter.

Warp1 0 1 1 1

1st Iter.

Memory Divergence

Divergent Branch

Go Go

Warp1

Warp0
Warp1

Warp0

No
Footprint

Warp0 1 1 1 1

1st Iter.

DAWS Operation Example

Cache Footprint

4
4 4 Want to capture

spatial locality

Hit
Hit
Hit

Hit

Go

Hit x30
Hit x30
Hit x30
Hit x30

Loop
Stop Go

No locality
detected = no

footprint

Locality Detected
1 Diverged Load

Detected

Footprint = 4X1

Footprint = 3X1
Early warps

profile loop for
later warps

Warp 0 has branch divergence
Both warps capture

spatial locality
together 4 Active threads

Stop

Footprint decreased

Tim Rogers Divergence-Aware Warp Scheduling 14

Methodology
GPGPU-Sim (version 3.1.0)

•  30 Streaming Multiprocessors
•  32 warp contexts (1024 threads total)

•  32k L1D per streaming multiprocessor
•  1M L2 unified cache

Compared Schedulers
•  Cache-Conscious Wavefront Scheduling (CCWS)
•  Profile based Best-SWL
•  Divergence-Aware Warp Scheduling (DAWS)

More schedulers
in paper

Tim Rogers Divergence-Aware Warp Scheduling 15

Sparse MM Case Study Results

Within 4% of optimized
with no programmer

input

0

0.5

1

1.5

2

D
iv

er
ge

nt
 C

od
e

Ex
ec

ut
io

n
tim

e

•  Performance (normalized to optimized version)

Tim Rogers Divergence-Aware Warp Scheduling 16

Sparse MM Case Study Results
•  Properties (normalized to optimized version)

0

0.5

1

1.5

2

2.5

3

13.3

<20% increase in off-
chip accesses

Divergent version now has
potential energy advantages

Divergent code issues
2.8x less instructions

D
iv

er
ge

nt
 c

od
e

of
f-c

hi
p

ac
ce

ss
es

Tim Rogers Divergence-Aware Warp Scheduling 17

Cache-Sensitive Applications
•  Breadth First Search (BFS)
•  Memcached-GPU (MEMC)
•  Sparse Matrix-Vector Multiply (SPMV-Scalar)
•  Garbage Collector (GC)
•  K-Means Clustering (KMN) Cache-Insensitive

Applications in paper

Tim Rogers Divergence-Aware Warp Scheduling 18

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Results
Outperform Best-SWL in highly

branch divergent

Overall 26%
improvement over

CCWS

N
or

m
al

iz
ed

 S
pe

ed
up

CCWS

BFS MEMC SPMV-
Scalar

GC KMN HMean

Best-‐SWL DAWS

Tim Rogers Divergence-Aware Warp Scheduling 19

Summary

Divergent loads in GPU programs.
•  Software solutions complicate programming

DAWS
•  Captures opportunities by accounting for divergence

Overall 26% performance improvement over CCWS
Case Study: Divergent code performs within 4% code optimized to

 minimize divergence

Questions?

