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Motivation 

•  Transfer locality management from SW to HW 

•  Software solutions: 
•  Complicate programming 
•  Not always performance portable 
•  Not guaranteed to improve performance 
•  Sometimes impossible 

 

•  Improve performance of programs with memory divergence 
•  Parallel irregular applications 
•  Economically important (server computing, big data) 
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Programmability Case Study 
Sparse Vector-Matrix Multiply 
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Previous Work 
•  Scheduling used to capture intra-thread locality (MICRO 2012) 

•  Proactive 

•  Branch divergence aware 
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Divergence-Aware 
Warp Scheduling 

How to be proactive 

Adapt to branch divergence 

•  Identify where locality exists 
•  Limit the number of warps executing in high locality regions 

•  Create cache footprint prediction in high locality regions 
•  Account for number of active lanes to create per-warp 

footprint prediction. 
•  Change the prediction as branch divergence occurs. 



                     

Tim Rogers Divergence-Aware Warp Scheduling 8 

Where is the locality? 
•  Examine every load instruction in program 
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Locality In Loops Limit Study 
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DAWS Objectives 

1.  Predict the amount of data accessed by each 
warp in a loop iteration. 

2.  Schedule warps in loops so that aggregate 
predicted footprint does not exceed L1D. 



                     

Tim Rogers Divergence-Aware Warp Scheduling 11 

Observations that enable prediction 
•  Memory divergence in static instructions is predictable 

 
 
 
 
•  Data touched by divergent loads dependent on active mask 
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Online characterization to create cache footprint prediction 

1.   Detect loops with locality 

2.   Classify loads in the loop 

3.   Compute footprint from active mask 
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int C[]={0,64,96,128,160,160,192,224,256}; 
void sum_row_csr(float* A, …)  { 
    float sum = 0; 
    int i =C[tid]; 
 
 
 
    while(i < C[tid+1]) { 
 
        sum  += A[ i ];  
 
 
        ++i; 
 
      } 
… 

Example Compressed Sparse Row Kernel 
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Methodology 
GPGPU-Sim (version 3.1.0) 

•  30 Streaming Multiprocessors 
•  32 warp contexts (1024 threads total) 

•  32k L1D per streaming multiprocessor 
•  1M L2 unified cache 

Compared Schedulers 
•  Cache-Conscious Wavefront Scheduling (CCWS) 
•  Profile based Best-SWL 
•  Divergence-Aware Warp Scheduling (DAWS) 

More schedulers 
in paper 
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Sparse MM Case Study Results 
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Sparse MM Case Study Results 
•  Properties (normalized to optimized version) 
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Cache-Sensitive Applications 
•  Breadth First Search (BFS) 
•  Memcached-GPU (MEMC) 
•  Sparse Matrix-Vector Multiply (SPMV-Scalar) 
•  Garbage Collector (GC) 
•  K-Means Clustering (KMN) Cache-Insensitive 

Applications in paper 
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Summary 

Divergent loads in GPU programs. 
•   Software solutions complicate programming 

DAWS 
•  Captures opportunities by accounting for divergence 

Overall 26% performance improvement over CCWS 
Case Study: Divergent code performs within 4% code optimized to 

   minimize divergence 

Questions? 


