
Divergence-Aware Warp Scheduling

Timothy G. Rogers1, Mike O’Connor2, Tor M. Aamodt1

1The University of British Columbia 2NVIDIA Research

Programmability

Results

Example Operation

Cache is 4 entries, 128B lines and fully associative.
By Time0, warp 0 has entered loop and loaded 4 lines into
cache. By Time1, warp 0 has captured spatial locality, DAWS
measures footprint. Warp 1 is prevented from scheduling as
DAWS predicts it will oversubscribe cache. By Time2, warp 0
has accessed 4 lines for 32 iterations and loaded 1 new line. 3
lanes have exited loop, decreasing footprint. Warp 1 and warp
0 are allowed to capture spatial locality together.

Simple, But Divergent Less Divergence, But More Complicated

Hardware aware of code locality
can take advantage of it without

needing the programmer

Cache Footprint Prediction

• Divergent loads a major problem when
programming GPUs

• Common in irregular applications
• Programmer encouraged to restructure

program, make use of scratchpad
• Our work asks: What if they didn’t

have to?

Divergence

Dependent on Warp Size

Parallel
Reduction

Explicit
Scratchpad Use

Where is the locality?

0
10
20
30
40
50
60

Static Load Instructions in GC workload

Hi
ts

/M
is

se
s P

KI

Lo
ad

 1

Lo
ad

 2

Lo
ad

 3

Lo
ad

 4

Lo
ad

 5

Lo
ad

 6

Lo
ad

 7

Lo
ad

 8

Lo
ad

 9

Lo
ad

 1
0

Lo
ad

 1
1

Lo
ad

 1
2

Lo
ad

 1
3

Locality
Concentrated in

Loops
Loop

0

0.2

0.4

0.6

0.8

1

Average

Accessed-This-Trip

Accessed-Last-Trip

Other

Fr
ac

tio
n

ca
ch

e
hi

ts
 in

lo

op
s

How much data should we keep around?

Cache footprint =
Number of lines accessed in one loop iteration

while(…) {
 load 1
 …
 load 2
 …
} Warp 0 Warp 0 1 1 1 1 1 1 1 1 1 1 1 1

Loop with locality Loop with locality

Diverged

Not Diverged

Predicable Metrics
Main Memory Main Memory

Memory
Divergence

4 active lanes = 4 accesses

Static loads:
Either diverged
or not diverged

Active Mask:
Determines lines accessed by

divergent loads

Warp 0 Warp 0 1 1 0 0 1 1 1 1 0 0 1 1

Main Memory Main Memory

Memory
Divergence

2 active lanes = 2 accesses

Create a cache footprint for each warp in loop

Hits on data accessed in
immediately previous loop

iteration

Programmability Case Study Results Performance vs. Other Schedulers on Cache-Sensitive Applications

26% Speedup over Cache-Conscious Wavefront Scheduling

With DAWS: Divergent Code within 4%
of Locality Managed Code with no

Programmer Input

Proactive Predictions: Reduce Cache Misses

Branch Divergence Awareness:
Increases Multithreading when Appropriate

4.9

0
0.5

1
1.5

2

GTO CCWS Best-SWL DAWS

Di
ve

rg
en

t C
od

e
Ex

ec
ut

io
n

Ti
m

e

Diverged Code vs. Locality Managed Code

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

BF
S

M
EM

C

SP
M

V GC

KM
N

HM
EA

N

N
or

m
al

ize
d

IP
C

GTO CCWS Best-SWL DAWS
• Greedy-then-oldest (GTO)
• Cache-Conscious Wavefront Scheduling (CCWS)
• Profile based Static Wavefront Limiting (Best-SWL)
• Divergence-Aware Warp Scheduling (DAWS)

MICRO 2013. Davis, CA

Cache
A[0]

A[64]
A[96]

A[128]

Warp0 0 - - -

Warp1 - 567

int C[]={0,64,96,128,160,160,192,224,256};
void sum_row_csr(float* A, …) {
 float sum = 0;
 int i =C[tid];

 while(i < C[tid+1]) {

 sum += A[i];

 ++i;

 }
…

Example Compressed Sparse Row Kernel

Warp1 4567

Warp00123

Warp1 - 567

Time0 Time1 Time2

2st Iter

1st Iter Stop

Warp0 0123
1st Iter 33rd Iter

Go

Go

Go

Go

Go

2nd Iter

Cache Cache

1st Iter
Divergent Branch

Divergent
(or Uncoalesced) Load

Active
Thread IDs

A[0]
A[64]
A[96]

A[128]

A[32]
A[160]
A[192]
A[224]

Cache Footprint Prediction

4 4 4No
Footprint Warp0

Warp1

Warp0

Warp1

