
A Locality-Aware Memory Hierarchy
for Energy-Efficient GPU Architectures

Minsoo Rhu Michael Sullivan Jingwen Leng Mattan Erez

The University of Texas at Austin

Introduction – (1)

•  “General purpose computing” with GPUs
–  Enabled by non-graphics APIs (e.g., CUDA, OpenCL)

•  ‘GP’GPU == massively multithreaded throughput processor

•  Excellent for executing regular programs
–  Simple control flow
–  Regular memory access patterns (with high locality)

• e.g., matrix-multiplication

2

Introduction – (2)

•  Importance in executing irregular apps increasing
–  Still embarrassingly parallel … but complex control flow and
 irregular memory access behavior

• Molecular dynamics
• Computer vision
• Analytics
• And much more …

•  GPU’s massive multi-threading + irregular memory
–  Small per-thread cache space available
–  Efficient caching becomes extremely challenging

•  Low hit rates
•  Low block reuse
•  Significant waste in off-chip bandwidth utilization

3

Problem / Our solution

•  Problem : Waste in off-chip bandwidth utilization

•  Solution : Locality-aware memory hierarchy (LAMAR)

4

(a)   [Byte-traffic/num_of_instrs] (left-axis) and the normalization to baseline memory system (right-axis).

Lower is better

BASE : Baseline memory system
LAMAR : Proposed solution

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

BA
SE

LA
MA

R

BA
SE

LA
MA

R

BA
SE

LA
MA

R

BA
SE

LA
MA

R

BA
SE

LA
MA

R

BA
SE

LA
MA

R

BA
SE

LA
MA

R

BA
SE

LA
MA

R

BA
SE

LA
MA

R

BA
SE

LA
MA

R

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

No
rm

al
iz

ed
 t

o
BA

SE

Of
f-

ch
ip

By

te
-t

ra
ff

ic

Byte-Traffic
Normalized

Background

5

Graphic Processing Units (GPUs)

•  General-purpose many-core accelerators
–  Use simple in-order shader cores in 10s / 100s numbers

•  Scalar frontend (fetch & decode) + parallel backend
–  Amortizes the cost of frontend and control

6

CUDA exposes hierarchy of data-parallel threads

•  SPMD model: single kernel executed by all scalar threads
•  Kernel / Thread-block / Warp / Thread

–  Multiple warps compose a thread-block

–  Multiple threads (32) compose a warp

7

A warp is scheduled as a batch of scalar threads

SIMT: Single-Instruction Multiple-Thread

•  Programmer writes code to be executed by scalar threads
in a vector SIMD hardware.

–  HW/SW supports conditional branches
• Each thread can follow its own control flow

–  Fine-grained scatter-gather LD/STs
• Each thread can LD/ST from arbitrary memory address

8

Memory divergence (a.k.a address divergence)
•  Well-structured memory

accesses are coalesced into a
single memory transaction
–  e.g., all the threads in a warp

access the same cache block
–  Minimized cache port

contention, save port-BW

•  A single warp (32 threads) can
generate up to 32 memory
transactions
–  Memory divergence
–  e.g., each thread within a warp

accesses a distinct cache block
region

9

(a)  Regular memory accesses

(b)Irregular memory accesses

The problem:

GPU caching inefficiencies

10

GPUs leverage massive multithreading

•  It is what makes them throughput processors!
–  Core of its latency-tolerance

• Thread-level parallelism >> Instruction-level parallelism

•  Massive multithreading + irregular memory accesses
–  Bursts of concurrent cache accesses within a given

time frame
–  Orders of magnitude higher cache contention than

CMP counterparts
• Efficient caching becomes extremely challenging!

11

On-chip cache hierarchy of GPUs

•  Per-thread cache capacity of modern CPUs/GPU

•  NVIDIA GPU cores issue LD/STs in [32B – 128B] granularity
–  Each scalar thread can request data of [1B – 16B]*
–  HW address coalescer generates one or more [32B – 128B]*

memory transactions per warp, depending on:
• Control divergence (subset of active threads within a warp)*
• Memory divergence

12

Intel
Core i7-4960x

IBM
Power7

Oracle
UltraSparc T3

NVIDIA
Kepler GK 110

32KB L1
2 threads/core

16KB/thread

32KB L1
4 threads/core

8KB/thread

8KB L1
8 threads/core

1KB/thread

48KB L1
2K threads/core

24B/thread

* 1B (char) – 16B (vector of floats)
* NVIDIA, “CUDA C Programming Guide”, 2013
* Fung et al., “Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow”, MICRO-2007

Baseline GPU memory hierarchy
(Coarse-grained [CG] fetch-only)

•  128B L1/L2 cache blocks
–  Cache misses invoke data requests in cache-block granularity
 (CG-fetches)

•  Width of each memory-channel: 64b (two 32b GDDR5 chips)
–  Fermi (GF110) / Kepler (GK110) / Southern-Island

•  64B (64b x 8-bursts) minimum access granularity

13

(a)  Baseline cache and memory system (V: valid)

Why is GPU caching so challenging?

•  Small per-thread cache capacity
–  24B per thread (worst case)

•  Larger cache block size
–  128B per cache block

•  Caching efficiency is significantly compromised!
–  High miss rate
–  Low block reuse
–  Sub-optimal utilization of off-chip bandwidth

14

Cache block reuse (temporal)
•  Number of repeated accesses to L1/L2 cache blocks,

after fill (before eviction)

15

(a)   L1 cache

(b) L2 cache

0%

20%

40%

60%

80%

100%
0
1
2 ~ 4
5 ~ 9
10 ~ 19
20 ~

0%

20%

40%

60%

80%

100%
0
1
2 ~ 4
5 ~ 9
10 ~ 19
20 ~

Cache block reuse (spatial)
•  Number of 32B chunks (or sectors) in a cache block

actually referenced in L1/L2 (128B cache block)

16

0%
20%
40%
60%
80%

100%
1 2 3 4

0%

20%

40%

60%

80%

100%
1 2 3 4

(a)   L1 cache

(b) L2 cache

Our solution:

Locality-aware memory hierarchy

17

LAMAR: Locality-aware memory hierarchy

18

GDU: Granularity Decision Unit

Determines whether to fetch
missed block in CG or in FG

Static-GDU: Always fetch CG or FG
Dynamic-GDU : choose at runtime

•  Provide FG data fetching capability to save BW
–  Motivation: massive multithreading limits cache block lifetime, so

the likelihood of block reuse is very low in GPUs
• Effectiveness of prefetching (e.g., filling all 128B) decreases
•  Sectored caches* + sub-ranked* memory system

* Liptay, “Structural aspects of the system/360 model 85, Part II: The cache”, IBM Journal, 1968
* Zheng et al., “Mini-Rank: Adaptive DRAM Architecture for Improving Memory Power Efficiency”, MICRO-2008

LAMAR memory systems (Fine-grained [FG]-enabled)

•  Sectored cache: amortize tag-overhead
–  32B sector, 4-sectors per cache block (hence a single tag)

•  Each channel divided into two sub-ranks (retrieve data from 1 chip)
–  32B (32b x 8-bursts) minimum access granularity
–  Allows finer control of data fetches from DRAM (64B vs 32B)

19

(a) Memory hierarchy with a sectored cache and a sub-ranked memory system
(128B cache block, V: valid)

Predicting Access Granularity

20

Bi-modal granularity predictor (BGP)

21

•  Predictor provides bi-modal prediction
–  Coarse granularity (CG)
–  Fine granularity (FG)

•  Fetch all block-wide data (CG) or just enough to
service the data requested from the GPU core (FG)
–  Reduce the number of RD/WR commands sent to DRAM
–  Reduce byte-traffic sent to off-chip memory

Light-weight BGP microarchitecture

22

•  Bloom-filter based design with dual-bitarrays
–  Temporally delayed/overlapped for history insertions

• The one with more insertions are used for TESTing
membership

• The older bitarray is CLEARed at regular intervals (N-ins.)
• When old bitarray is cleared, other one used for TESTing

–  Balance size, false positive rate, and history depth

Granularity prediction algorithm

•  Predictor has a default prediction (like agree predictor*)
–  Initialized as CG (or FG) at kernel initialization

•  Each cache miss queries the bloom-filter
–  INTUITION. check whether missing block’s optimal

fetching-prediction agrees* with the default prediction

•  What/when are elements inserted into the bloom-filter?
–  What: Evicted block-address (+ spatial reuse information)
–  When: Evicted block’s reuse information disagrees* with

the default prediction

23

* Sprangle et al., “The agree predictor: A mechanism for reducing negative branch history interference”,
ISCA-1997

Key experiments and analysis

24

Simulation environment

•  GPGPU-Sim
–  Processor architecture

• Similar to GTX 480
–  Memory hierarchy

• Sectored cache
• Sub-ranked memory system (using DrSim*)
• Memory bandwidth

–  179.2 GB/s overall (through 8 channels)

•  Applications
–  CUDA-SDK, Rodinia, LonestarGPU, MapReduce
–  Characterization

•  FG-leaning (avg. number of sectors referenced ≤ 2.0)
• CG-leaning (avg. number of sectors referenced > 2.0)

25

* http://lph.ece.utexas.edu/public/Main/DrSim

Off-chip byte traffic (normalized to # of instructions)

26

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

CG

FG

BG
P

CG

FG

BG
P

CG

FG

BG
P

CG

FG

BG
P

CG

FG

BG
P

CG

FG

BG
P

CG

FG

BG
P

CG

FG

BG
P

CG

FG

BG
P

CG

FG

BG
P

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

No
rm

al
iz

ed
 t

o
CG

Tr
af

fi
c/

In
st

r.

Traffic/Instr
Normalized

(a) FG-leaning applications

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P

MST RAY SCLST BACKP NN SRAD LAVAMD SPROD MCARLO FWT

No
rm

al
iz

ed
 t

o
CG

Tr
af

fi
c/

In
st

r.

Traffic/Instr
Normalized

(b) CG-leaning applications

Performance improvements

27

Higher is better

(a) FG-leaning applications

(b) CG-leaning applications

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP HarMean

Sp
ee

du
p

CG
FG
BGP

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

MST RAY SCLST BACKP NN SRAD LAVAMD SPROD MCARLO FWT HarMean

Sp
ee

du
p

CG
FG
BGP

DRAM power consumption

28

(a) FG-leaning applications

(b) CG-leaning applications

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

Pe
rf

/W
at

t
(N

or
ma

li
ze

d)

Po
we

r
(W

at
ts

)

Background ACT/PRE
READ WRITE
REFRESH Perf/Watt

0
0.2
0.4
0.6
0.8
1
1.2
1.4

0
10
20
30
40
50
60
70

CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P CG

FG

BG
P

MST RAY SCLST BACKP NN SRAD LAVAMD SPROD MCARLO FWT

Pe
rf

/W
at

t
(N

or
ma

li
ze

d)

Po
we

r
(W

at
ts

)

LAMAR conclusions

•  Memory hierarchy of GPUs necessitates fine-grained
access granularity
–  Inherent data locality is rarely captured in GPUs
–  Minimizing useless overfetching (within cache block)

improves BW utilization
• Reduces DRAM power consumption
•  Improves performance
• Perf/Watt enhanced

29

