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Introduction – (1) 

•  “General purpose computing” with GPUs 
–  Enabled by non-graphics APIs (e.g., CUDA, OpenCL) 

•  ‘GP’GPU == massively multithreaded throughput processor 

•  Excellent for executing regular programs 
–  Simple control flow 
–  Regular memory access patterns (with high locality) 

• e.g., matrix-multiplication 
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Introduction – (2) 

•  Importance in executing irregular apps increasing 
–  Still embarrassingly parallel … but complex control flow and  
    irregular memory access behavior 

• Molecular dynamics 
• Computer vision 
• Analytics 
• And much more … 

•  GPU’s massive multi-threading + irregular memory 
–  Small per-thread cache space available 
–  Efficient caching becomes extremely challenging 

•  Low hit rates 
•  Low block reuse 
•  Significant waste in off-chip bandwidth utilization 
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Problem / Our solution 

•  Problem  : Waste in off-chip bandwidth utilization 

•  Solution  : Locality-aware memory hierarchy (LAMAR) 
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(a)   [Byte-traffic/num_of_instrs] (left-axis) and the normalization to baseline memory system (right-axis). 

Lower is better 

BASE  : Baseline memory system 
LAMAR  : Proposed solution 
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Background 
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Graphic Processing Units (GPUs) 

•  General-purpose many-core accelerators 
–  Use simple in-order shader cores in 10s / 100s numbers 

•  Scalar frontend (fetch & decode) + parallel backend 
–  Amortizes the cost of frontend and control 
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CUDA exposes hierarchy of data-parallel threads 

•  SPMD model: single kernel executed by all scalar threads  
•  Kernel / Thread-block / Warp / Thread 

–  Multiple warps compose a thread-block 

–  Multiple threads (32) compose a warp 
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A warp is scheduled as a batch of scalar threads 



SIMT: Single-Instruction Multiple-Thread 

•  Programmer writes code to be executed by scalar threads 
in a vector SIMD hardware. 

–  HW/SW supports conditional branches 
• Each thread can follow its own control flow 

–  Fine-grained scatter-gather LD/STs 
• Each thread can LD/ST from arbitrary memory address 
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Memory divergence (a.k.a address divergence) 
•  Well-structured memory 

accesses are coalesced into a 
single memory transaction 
–  e.g., all the threads in a warp 

access the same cache block 
–  Minimized cache port 

contention, save port-BW 

•  A single warp (32 threads) can 
generate up to 32 memory 
transactions 
–  Memory divergence 
–  e.g., each thread within a warp 

accesses a distinct cache block 
region 
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(a)  Regular memory accesses 

(b)Irregular memory accesses 



The problem: 

GPU caching inefficiencies 
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GPUs leverage massive multithreading  

•  It is what makes them throughput processors! 
–  Core of its latency-tolerance 

• Thread-level parallelism >> Instruction-level parallelism 

•  Massive multithreading + irregular memory accesses 
–  Bursts of concurrent cache accesses within a given 

time frame 
–  Orders of magnitude higher cache contention than 

CMP counterparts  
• Efficient caching becomes extremely challenging! 
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On-chip cache hierarchy of GPUs 

•  Per-thread cache capacity of modern CPUs/GPU  
 

 

 

•  NVIDIA GPU cores issue LD/STs in [32B – 128B] granularity 
–  Each scalar thread can request data of [1B – 16B]* 
–  HW address coalescer generates one or more [32B – 128B]* 

memory transactions per warp, depending on: 
• Control divergence (subset of active threads within a warp)* 
• Memory divergence 
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Intel  
Core i7-4960x 

IBM  
Power7 

Oracle 
UltraSparc T3 

NVIDIA  
Kepler GK 110 

32KB L1 
2 threads/core 

16KB/thread 

32KB L1 
4 threads/core 

8KB/thread 

8KB L1 
8 threads/core 

1KB/thread 

48KB L1 
2K threads/core 

24B/thread 

* 1B (char) – 16B (vector of floats) 
* NVIDIA, “CUDA C Programming Guide”, 2013 
* Fung et al., “Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow”, MICRO-2007 



Baseline GPU memory hierarchy  
(Coarse-grained [CG] fetch-only) 

•  128B L1/L2 cache blocks 
–  Cache misses invoke data requests in cache-block granularity  
    (CG-fetches) 

•  Width of each memory-channel: 64b (two 32b GDDR5 chips) 
–  Fermi (GF110) / Kepler (GK110) / Southern-Island 

•  64B (64b x 8-bursts) minimum access granularity  
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(a)  Baseline cache and memory system (V: valid) 



Why is GPU caching so challenging? 

•  Small per-thread cache capacity  
–  24B per thread (worst case) 

•  Larger cache block size  
–  128B per cache block 

•  Caching efficiency is significantly compromised! 
–  High miss rate 
–  Low block reuse 
–  Sub-optimal utilization of off-chip bandwidth 

14 



Cache block reuse (temporal) 
•  Number of repeated accesses to L1/L2 cache blocks, 

after fill (before eviction) 
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(a)   L1 cache 

(b) L2 cache 
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Cache block reuse (spatial) 
•  Number of 32B chunks (or sectors) in a cache block 

actually referenced in L1/L2 (128B cache block) 
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Our solution: 

Locality-aware memory hierarchy 
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LAMAR: Locality-aware memory hierarchy 
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GDU: Granularity Decision Unit 
 

Determines whether to fetch 
missed block in CG or in FG 

Static-GDU: Always fetch CG or FG 
Dynamic-GDU : choose at runtime 

•  Provide FG data fetching capability to save BW 
–  Motivation:  massive multithreading limits cache block lifetime, so 

the likelihood of block reuse is very low in GPUs  
• Effectiveness of prefetching (e.g., filling all 128B) decreases 
•  Sectored caches* + sub-ranked* memory system 

* Liptay, “Structural aspects of the system/360 model 85, Part II: The cache”, IBM Journal, 1968 
* Zheng et al., “Mini-Rank: Adaptive DRAM Architecture for Improving Memory Power Efficiency”, MICRO-2008 



LAMAR memory systems (Fine-grained [FG]-enabled) 

•  Sectored cache: amortize tag-overhead 
–  32B sector, 4-sectors per cache block (hence a single tag) 

•  Each channel divided into two sub-ranks (retrieve data from 1 chip) 
–  32B (32b x 8-bursts) minimum access granularity  
–  Allows finer control of data fetches from DRAM (64B vs 32B) 
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(a) Memory hierarchy with a sectored cache and a sub-ranked memory system 
(128B cache block, V: valid) 



Predicting Access Granularity 
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Bi-modal granularity predictor (BGP) 
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•  Predictor provides bi-modal prediction 
–  Coarse granularity (CG)  
–  Fine granularity (FG) 

•  Fetch all block-wide data (CG) or just enough to 
service the data requested from the GPU core (FG) 
–  Reduce the number of RD/WR commands sent to DRAM 
–  Reduce byte-traffic sent to off-chip memory 



Light-weight BGP microarchitecture 
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•  Bloom-filter based design with dual-bitarrays 
–  Temporally delayed/overlapped for history insertions 

• The one with more insertions are used for TESTing 
membership 

• The older bitarray is CLEARed at regular intervals (N-ins.) 
• When old bitarray is cleared, other one used for TESTing 

–  Balance size, false positive rate, and history depth 



Granularity prediction algorithm 

•  Predictor has a default prediction (like agree predictor*) 
–  Initialized as CG (or FG) at kernel initialization 

•  Each cache miss queries the bloom-filter 
–  INTUITION. check whether missing block’s optimal 

fetching-prediction agrees* with the default prediction 

•  What/when are elements inserted into the bloom-filter? 
–  What: Evicted block-address (+ spatial reuse information) 
–  When: Evicted block’s reuse information disagrees* with 

the default prediction 
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* Sprangle et al., “The agree predictor: A mechanism for reducing negative branch history interference”, 
ISCA-1997 



Key experiments and analysis 
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Simulation environment 

•  GPGPU-Sim  
–  Processor architecture 

• Similar to GTX 480 
–  Memory hierarchy 

• Sectored cache 
• Sub-ranked memory system (using DrSim*) 
• Memory bandwidth 

–  179.2 GB/s overall (through 8 channels) 

•  Applications 
–  CUDA-SDK, Rodinia, LonestarGPU, MapReduce 
–  Characterization 

•  FG-leaning (avg. number of sectors referenced ≤ 2.0) 
• CG-leaning (avg. number of sectors referenced > 2.0) 
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* http://lph.ece.utexas.edu/public/Main/DrSim 



Off-chip byte traffic (normalized to # of instructions)  
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(a) FG-leaning applications 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

CG
 

FG
 

BG
P CG
 

FG
 

BG
P CG
 

FG
 

BG
P CG
 

FG
 

BG
P CG
 

FG
 

BG
P CG
 

FG
 

BG
P CG
 

FG
 

BG
P CG
 

FG
 

BG
P CG
 

FG
 

BG
P CG
 

FG
 

BG
P 

MST RAY SCLST BACKP NN SRAD LAVAMD SPROD MCARLO FWT 

No
rm

al
iz

ed
 t

o 
CG

 

Tr
af

fi
c/

In
st

r.
 

Traffic/Instr 
Normalized 

(b) CG-leaning applications 



Performance improvements 
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Higher is better 

(a) FG-leaning applications 

(b) CG-leaning applications 
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DRAM power consumption 
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(a) FG-leaning applications 

(b) CG-leaning applications 
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LAMAR conclusions 

•  Memory hierarchy of GPUs necessitates fine-grained 
access granularity 
–  Inherent data locality is rarely captured in GPUs 
–  Minimizing useless overfetching (within cache block) 

improves BW utilization 
• Reduces DRAM power consumption 
•  Improves performance 
• Perf/Watt enhanced 
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