
Fig. 1:  Baseline CG-only memory system. 

 Methodology 
 GPGPU-Sim + DrSim 

• GPGPU-Sim (http://gpgpu-sim.org) 
• DrSim (http://lph.ece.utexas.edu/public/Main/DrSim) 
• 15 SMs, 64KB on-chip SRAM (L1/scratchpad), 768KB shared L2 
• 8 memory channels (179.2 GB/sec), sub-ranked, FR-FCFS 
• Benchmarks: Rodinia, CUDA-SDK, LonestarGPU 

 

 Evaluation Results 
 Off-chip traffic  

 
 
 
 
 
 
 
 

 Performance 
 
 
 
 
 
 
 
 

 DRAM power consumption 
 
 
 

 
 

Using GPUs for compute has become increasingly popular thanks to their high 
arithmetic throughput and peak memory bandwidth. Prior work assumes a 
coarse-grained (CG) memory hierarchy for GPUs, which is a perfect match for 
regular programs with high data locality, and provides high peak memory 
bandwidth while decreasing control overheads. Applications with irregular 
control and memory access patterns, however, suffer from inefficient caching,  
which leads to substantial waste in off-chip memory throughput under the 
baseline CG memory system. 
 

We argue that GPU cache architecture and throughput-oriented design 
necessitates fine-grained (FG) data fetching capability across the memory 
hierarchy. By dynamically predicting optimal access granularity, our locality-
aware memory hierarchy achieves the best of both CG and FG access 
granularity characteristics. 
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Fig. 6. Processor level DVFS energy savings and performance 
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Analysis  
 GPU shader core issues memory accesses in 32 -- 128 Bytes granularity  
 CG-only memory system, which always fetches missed blocks in cache 

block size granularity, substantially wastes off-chip bandwidth. 
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Fig. 2:  Number of 32-Byte sectors referenced in L1 (top) L2 (bottom).  

Fig. 3:  Number of repeated accesses in L1 (top) L2 (bottom).  

Fig. 4:  (a) LAMAR overview. (b) FG-enabled memory hierarchy. 

Our locality-aware memory hierarchy (LAMAR) is motivated by the dual 
observations that many GPU applications demonstrate highly dynamic 
and diverse levels of spatial locality, and that the low per-thread cache 
capacity limits the amount of temporal locality that can be exploited. 
 

LAMAR enables fine-grained (FG) data fetching across the entire memory 
hierarchy, improving off-chip bandwidth utilization. FG accesses are provided 
by a sectored cache hierarchy and a sub-ranked memory system (Fig. 4). 
Within each cache level, the granularity-decision unit (GDU) determines 
whether to initiate each miss request in CG or in FG. By dynamically 
predicting access granularity, LAMAR achieves the best of both CG and FG 
access granularity characteristics. 

LAMAR FOR GPUS 

GRANULARITY PREDICTION 

(a) (b) 

Dual-bitarray, bloom-filter based design 
Light-weight, temporally overlapped for history preservation 
Always maintain subset of insertion-history 
Balance size, false positive rate, and history depth 
Agree predictor* inspired design 

Fig. 5:  (a) Bi-modal granularity predictor, (b) Insertion algorithm. 
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* Sprangle et al., “The agree predictor: A mechanism for reducing negative branch history interference”, ISCA-1997 
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 LAMAR significantly improves energy-efficiency (Perf/Watt) 
 Memory hierarchy of GPUs necessitates fine-grained access 

granularity 
• Inherent data locality is rarely captured in GPUs 
• Minimizing useless overfetching (within cache block) improves 

bandwidth utilization 
 DRAM power consumption significantly reduced 

LITERATURE CITED 

CONCLUSION 

 CBUS: Control bus 
 DBUS: Data bus 
 GDDR5 chips: 2 chips/channel 
 Cache block size: 128 Bytes 
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