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(a) eTLB hit and Data hit: The CPU sends a request to the cache. The request hits in the eTLB (1) and the CLT tells us that the 

data is in the cache and the speci�c way. The data is then read and sent to the CPU from the cache by combining the set index 

from the virtual address with the way information from the eTLB (2).

(b) eTLB Optimization using last value prediction: The request matches the last-used eTLB entry and therefore hits in the 

last-value eTLB register (1). This allows us to bypass the eTLB to save energy.  The data is then read and sent to the CPU from 

the cache by combining the set index from the virtual address with the way information from the eTLB (2).

(c) eTLB hit but Data miss: The CPU request hits in the eTLB (1), but the CLT shows that the data is not in the cache. A victim

cache line is then found using LRU replacement (2). The victim cache line's eTLB entry is invalidated by following the backpoin-

ter (3). The victim cache line is then evicted to L2 (4). The missing cache line is then fetched from L2 and installed into L1 (5). 

Finally, the eTLB is updated to point to the inserted cache line's way. 

(d) eTLB miss and replacement: The CPU request misses in the eTLB (1). The replacement eTLB page is evicted by �ushing 

its cache lines to L2 (2). The reverse TLB (BLT) is consulted to detect synonyms (3). The missing page is then installed by read-

ing the address translation from the L2 TLB.

(e) External coherence request: The L2 cache is checked as normal (1). The external request is a physical address, but the 

TLC cache is virtually indexed. A physical to virtual translation is done in the BLT, which also �lters the accesses. (If the coher-

ency request misses in the BLT then we do not need to check the TLC since every eTLB entry must also have an BLT entry.) The 

virtual address is then used to read the way information in the eTLB (3), and the cache line data is accessed (4).

(f) Synonym optimization: An indirection is used to optimize synonym handling by having a backpointer to the BPM, which in 

turn points to the eTLB. This added level of indirection means that we only need to update the BPM when a synonym moves in 

the eTLB.
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and the data-array at 64 kB.
The Basic TLC is faster than VIPT-2P at 16 kB and 32 kB

caches, but slightly slower at 64 kB. The eTLB grows faster
in size with more entries than VIPT-2P’s tag-array. This
eventually results in a longer access time at 64 kB, since the
number of TLB entries are also doubled when the cache size
is increased.

The access time is lower for the Optimized TLC than the
Basic TLC. This is due to micro-page sub-banking, which re-
duces bitline and wordline delays, and communication delays
between the eTLB and the data-array. However, a large frac-
tion of the access time is now spent in the micro-page sub-
banking H-Tree (Note that the internal H-Tree for CACTI’s
sub-banking is included in the Data latency).

6.3 Performance
Figure 9 shows that all the caches are fast enough to sup-

port a one cycle access latency for a 4GHz processor with
32 kB cache sizes. We therefore use a 4 cycle latency (includ-
ing address calculations, etc.) for all caches in the perfor-
mance simulations. The performance results therefore de-
pend only on the cache miss ratio, since the hit access time
remains the same. Note that VIPT-2P is assumed to have
the same miss ratio as VIPT, and TLC-LV the same miss
ratio as Optimized TLC. We therefore only show results for
VIPT, Basic TLC and Optimized TLC.

Figure 10 shows the relative CPI di↵erence in percent
compared to a VIPT cache for SPEC’s execution as a per-
centage of execution time across all SPEC benchmarks. The
Basic TLC has a higher cache miss ratio since it evicts more
cache lines due to eTLB replacements. The little core has
a smaller reorder bu↵er and can not hide the misses as well
as the big core, resulting in a average slowdown of 0.75% on
the little core but a speedup of 0.14% on the big core.

The leftmost part of the big core’s CPI curve shows a no-
ticeable speedup (9.6%). This is probably due to evicting
dead cache lines early, and having more out-of-order exe-
cution and memory level parallelism. This highlights the
importance of evaluating di↵erent core types (big vs. little).

The Optimized TLC reduces the number of cache misses
by using a smarter eTLB replacement policy that evicts less
data, and by using micro-pages with more eTLB entries for
handling sparse access patterns. This removes nearly all
performance di↵erences, and we see a flat line across whole
SPEC. In addition, is also has a lower eTLB miss ratio and
we see a slight speedup by 0.12% (little) and 0.11% (big) on
average. This shows that by applying these techniques, we
can achieve the same or better performance than a VIPT
cache.

6.4 Read Energy
Figure 11 shows the read hit energy. VIPT consumes most

energy since it reads all ways. VIPT-2P reduces the en-
ergy by 37% by only reading one way from the data-array.
However, the TLB and tag-array energy remains the same.
The Basic TLC stores the cache line location information in
the eTLB and can therefore eliminate the tag-array. How-
ever, the TLB energy increases slightly since the eTLB store
more information, but the total energy is still lower than the
phased VIPT-2P and 42% lower than parallel VIPT.

The Optimized TLC reduces the read energy further down
to 52% of VIPT by decreasing bitline and wordline energy,
and by reducing communication costs between the eTLB
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Figure 11: Dynamic energy breakdown.

and the data-array with micro-page sub-banking. However,
a large part of the energy is now due to the H-Tree (CACTI’s
internal sub-bank H-Tree for the data arrays is included in
the Data part).
For the other two cache sizes, the energy is reduced by

30% for the 16 kB cache, since it is smaller and has less
assosiativity, and by 69% for the 64 kB cache, due to larger
size and higher associativity.
Note that this analysis is conservative. We only read a

word (64 bits) from the cache. Many processors support
load operations (e.g., SSE [8]) that load several words from
a cache line. Such a design would increase the energy dif-
ference since the TLC design would read even fewer bits
compared to a parallel VIPT cache.

6.5 Runtime Energy
Figure 12 shows the aggregate dynamic runtime energy

(i.e., number of reads and writes multiplied by the read and
write energy for each cache structure) across SPEC. The
energy is normalized to a parallel VIPT cache. The figure
does not include L3 energy since it is similar for both VIPT
and TLC. TLC’s energy has been broken down further into
sub-components. The L2 cache contributes more to the little
core’s energy since it is larger than the big core’s L2 cache.
Most energy is spent in the micro-page sub-bank H-Tree

(43% little and 45% big), followed by the data-array (22%
little and 23% big) and the eTLB (17% little and big). Some
applications have noticeable higher BLT energy, due to more
eTLB misses and macro-page preloading (since the BLT
needs to be access 8 times on every eTLB miss to detect
synonyms).
The rightmost applications (at 98-100%, e.g., mcf) have

very high TLB miss ratios and still evict many L1 cache lines
due to eTLB replacements. This in turn results in more L2
accesses, and we see an increase in both BLT and L2 energy.
The Optimized TLC reduces the dynamic runtime energy

more than phased VIPT-2P on average. In total, the energy
is reduced by 78.1% down to 21.9% of a VIPT cache on both
the little and big cores. This is significantly more than the
reduction in read hit energy in Figure 11, and is largely due
to not reading the cache on misses.

Little Big

Frequency 2GHz 4GHz

Width / ROB /
LSQ / Registers

2 / 32 / 16 / 64 8 / 192 / 64 / 256

L1 Instruction
Cache

32kB, 8-way, LRU, 4c

L1 Data Cache 32kB, 8-way, LRU, 4c

L2 Unified Cache 512kB, 8-way, LRU, 12c 256kB, 8-way, LRU, 7c

L3 Cache - 8MB, 16-way, LRU, 20c

Memory 2GB DDR3 11-11-11

L1 TLB / eTLB 64 entries, 4kB Pages, 8-way, LRU

L2 TLB 512 entries, LRU, 7c

Table 6: Baseline processor configurations

indexed while the incoming requests are based on physical
addresses. To handle this, we use the reverse TLB (BLT)
to translate the request’s physical address to the current
synonym’s virtual address in the eTLB (see Figure 4e). The
coherency request is then resolved reading the way index
from the eTLB. Note that extra pressure will be put on the
eTLB ports, however, it is no worse than for the baseline
tag-array.

The BLT increases the latency for coherency requests that
hit in the L1 cache. However, the reverse TLB and the L1
cache access only have to be as fast as the L2 cache lookup.
Furthermore, all pages must have an entry in the BLT, and
all cache lines must have an entry in the eTLB. This means
that the BLT is e↵ectively also a snoop filter. Requests
can therefore be dropped if they miss in the BLT since that
guarantees that the cache does not contain the data.

Summary
To make the Basic TLC and the Optimized TLC design
drop-in replacements for a standard VIPT cache, they must
handle synonyms, homonyms, and coherency requests. To
do so e�ciently, we add two new structures (a BPM and a
BLT). Both structures are o↵ the critical path, since they
are only accessed during misses, and will therefore not a↵ect
the performance.

6. RESULTS
The previous section explored di↵erent design decisions

for minimizing cache line evictions due to eTLB replace-
ments, compatibility with VIPT caches and better commu-
nication between the eTLB and the data-array. In this sec-
tion, we finalize the TLC design and evaluate performance
and energy.

6.1 Methodology
We used the Gem5 x86 simulator [3] to evaluate the perfor-

mance. Table 6 shows the baseline configurations. To better
understand the performance impact, we evaluate two di↵er-
ent configurations. A small, simple, out-of-order core (little)
and an aggressive out-of-order core (big) with a deeper cache
hierarchy. The little core runs at 2GHz, has a 2 level cache
hierarchy, and targets mobile devices. The big core runs at
4GHz, has a 3 level cache hierarchy, and is representative of
high-end server processors.

To evaluate the TLC, we used the SPEC2006 [7] bench-
marks with reference input. We used a phase detection
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Figure 9: Latency breakdown.

tool [17] to find the largest phases [19] in each benchmark.
Each phase was then simulated for 100M instructions, and
the results were scaled with the length of each phase5.
We used the CACTI 6.5 [12, 10] cache simulator with a

22 nm process to compute access times and energy. We used
one read-write port, high-performance transistors for first
level caches and low static power transistors for second level
caches, and we optimized for access times. For the CACTI
studies, we also show results for 4-way, 16 kB with 32-entry
TLBs and 16-way, 64 kB with 128-entry TLBs caches. The
associativity is di↵erent since the cache size is a function of
associativity in VIPT caches (i.e., cache size = associativity
⇥ page size). However, we focus the evaluation on the 32 kB
caches we have studied throughout the paper.
We compare the TLC design with a standard VIPT cache

with parallel lookup (VIPT) and a phased VIPT cache with
2-phase lookup (VIPT-2P). The TLC design has three ver-
sions, Basic TLC, Optimized TLC, and TLC-LV. The Basic
TLC has none of the optimizations from the previous sec-
tions. The Optimized TLC uses LAD+LRU replacement,
512B micro-pages, macro-page preloading, and micro-page
sub-banking. Note that we only use micro-page sub-banking
for better communication between the eTLB and data-array.
Both TLC and VIPT support the same number of concur-
rent accesses. TLC-LV is the same as Optimized TLC but
includes the last-value page-prediction discussed later in Sec-
tion 8 that bypasses the eTLB for reduced energy on a last-
value hit.

6.2 Access Time
Figure 9 shows access time breakdowns for the di↵erent

caches. Overall, VIPT has the lowest latency since the ac-
cess time is only due to the data-array. VIPT-2P’s TLB
component shrinks with larger caches. At 16 kB and 32 kB,
the tag-array has to wait for the TLB translation before it
can proceed with the tag comparison. However, at 64 kB,
the TLB is fast enough to send the address translation to
the tag-array before the tags arrive to the tag-comparator.
The access times is therefore bound only by the tag-array

5Due to Gem5 limitations we could not simulate all phases.
The results section therefore uses a subset (202 / 307) of the
phases that were used in the Pin-based studies.
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6.6 Summary
The results show that the TLC design is: 1) fast enough

to support clock frequencies beyond 4GHz, 2) can achieve
the same performance (miss ratio and CPI) as a traditional
VIPT cache, and 3) uses 78% less dynamic runtime energy
than a VIPT cache.

7. RELATED WORK
In this section we look at related work on how to minimize

number of bit-reads, and how cache lines can be tracked
through course-grained data structures.

Course-grained tracking. The idea of tracking cache
lines through courser grained data structures (e.g., a page)
is not new. Zebchuk et al. [21] use a Region Vector Array
(similar to our eTLB), to locate where cache lines are located
in the L2 cache, to reduce tag area, eliminate snoops and for
prefetching.

In contrast to our their work, we focus on how course-
grained tracking can be applied to first level caches, and how
any accompanying issues (e.g., virtual addresses, synonyms,
etc) can be solved. Moreover, the key benefit and goal of
our work is lower dynamic energy, which is much larger for
L1 caches than L2/L3 caches, due to L1 filtering.

Pseudo-associative caches. Most of the data-array en-
ergy in a parallel VIPT cache is due to reading all ways.
One way to reduce the energy is to simply use fewer ways.
However, that typically decreases performance by incurring

more cache misses. A significant amount of work has ad-
dressed this issue by adding pseudo-associativity on top of
direct-mapped or low-associative caches [18, 6, 15, 16]. That
is, the cache behaves like it has more associativity than it
actually has. This is typically done by using di↵erent hash-
ing functions for di↵erent ways or sets and by combining it
with the ability to move cache lines between sets instead of
evicting them.
However, these techniques are limited to physically in-

dexed caches (e.g., PIPT, and last level caches), since the
associativity typically determines the L1 cache size for virtu-
ally indexed caches such as VIPT and TLC (i.e., cache size
= associativity * page size). This makes it hard to reduce
the associativity without reducing the cache size.
TLB optimizations. Much work has also focused on re-

ducing the TLB energy by using virtual caches (e.g., VIVT).
The TLB is then only accessed on L1 cache misses. How-
ever, this typically introduces problems with synonyms etc.
To deal with this, various software [11] and hardware [14,
1] techniques have been proposed. Instead of reducing the
TLB energy, we amortizes the TLB energy by using some of
that energy to reduce the data-array energy and to remove
the tag-array.
Way-prediction. Way-prediction is used to reduce data-

array energy by predicting which way to read [5, 2, 13, 9].
On a correct prediction, only the correct way is read. How-
ever, miss-predictions incur extra energy and latency.

-10

-5

0

5

10

0 10 20 30 40 50 60 70 80 90 100

R
el
at
iv
e
C
P
I
co

m
p
ar
ed

to
V
IP
T

(%
)

(a) SPEC Execution Time for Little core (%)

Basic TLC Optimized TLC

-10

-5

0

5

10

0 10 20 30 40 50 60 70 80 90 100

R
el
at
iv
e
C
P
I
co

m
p
ar
ed

to
V
IP
T

(%
)

(b) SPEC Execution Time for Big core (%)

Basic TLC Optimized TLC

Figure 10: Relative CPI compared to VIPT.

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100D
yn

am
ic

E
n
er
gy

N
or
m
al
iz
ed

to
V
IP
T

(%
)

(a) SPEC Execution Time for Little core (%)

eTLB

Data

H-Tree

L2

BLT

SPEC Average:

VIPT-2P: 24.2%
Basic TLC: 23.6%
Opt. TLC: 21.9%
TLC-15W: 21.0%
TLC-LV: 19.4%

VIPT-2P Optimized TLC

eTLB Data H-Tree L2 BLT

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100D
yn

am
ic

E
n
er
gy

N
or
m
al
iz
ed

to
V
IP
T

(%
)

(b) SPEC Execution Time for Big core (%)

SPEC Average:

VIPT-2P: 23.8%
Basic TLC: 23.2%
Opt. TLC: 21.9%
TLC-15W: 21.7%
TLC-LV: 19.5%

VIPT-2P Optimized TLC

TLB Data H-Tree L2 BLT

Figure 12: Dynamic runtime energy normalized to parallel VIPT.

6.6 Summary
The results show that the TLC design is: 1) fast enough

to support clock frequencies beyond 4GHz, 2) can achieve
the same performance (miss ratio and CPI) as a traditional
VIPT cache, and 3) uses 78% less dynamic runtime energy
than a VIPT cache.

7. RELATED WORK
In this section we look at related work on how to minimize

number of bit-reads, and how cache lines can be tracked
through course-grained data structures.

Course-grained tracking. The idea of tracking cache
lines through courser grained data structures (e.g., a page)
is not new. Zebchuk et al. [21] use a Region Vector Array
(similar to our eTLB), to locate where cache lines are located
in the L2 cache, to reduce tag area, eliminate snoops and for
prefetching.

In contrast to our their work, we focus on how course-
grained tracking can be applied to first level caches, and how
any accompanying issues (e.g., virtual addresses, synonyms,
etc) can be solved. Moreover, the key benefit and goal of
our work is lower dynamic energy, which is much larger for
L1 caches than L2/L3 caches, due to L1 filtering.

Pseudo-associative caches. Most of the data-array en-
ergy in a parallel VIPT cache is due to reading all ways.
One way to reduce the energy is to simply use fewer ways.
However, that typically decreases performance by incurring

more cache misses. A significant amount of work has ad-
dressed this issue by adding pseudo-associativity on top of
direct-mapped or low-associative caches [18, 6, 15, 16]. That
is, the cache behaves like it has more associativity than it
actually has. This is typically done by using di↵erent hash-
ing functions for di↵erent ways or sets and by combining it
with the ability to move cache lines between sets instead of
evicting them.
However, these techniques are limited to physically in-

dexed caches (e.g., PIPT, and last level caches), since the
associativity typically determines the L1 cache size for virtu-
ally indexed caches such as VIPT and TLC (i.e., cache size
= associativity * page size). This makes it hard to reduce
the associativity without reducing the cache size.
TLB optimizations. Much work has also focused on re-

ducing the TLB energy by using virtual caches (e.g., VIVT).
The TLB is then only accessed on L1 cache misses. How-
ever, this typically introduces problems with synonyms etc.
To deal with this, various software [11] and hardware [14,
1] techniques have been proposed. Instead of reducing the
TLB energy, we amortizes the TLB energy by using some of
that energy to reduce the data-array energy and to remove
the tag-array.
Way-prediction. Way-prediction is used to reduce data-

array energy by predicting which way to read [5, 2, 13, 9].
On a correct prediction, only the correct way is read. How-
ever, miss-predictions incur extra energy and latency.
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