
MLP-Aware Dynamic Instruction
Window Resizing for Adaptively

Exploiting Both ILP and MLP

Yuya Kora
Kyohei Yamaguchi

Hideki Ando

Nagoya University

Single-Thread Performance

• In the past: Pollack’s law
– Performance improvement ∝

• Recently: little improve
– Despite ever increasing transistor budget

• Use increased transistor budget effectively to

improve single-thread performance

𝑎𝑟𝑒𝑎

2

Memory Wall

• Large speed gap between processor and main
memory

• Conventional solutions:
– Large cache

• Expensive: several MB is not enough

– Hardware prefetcher
• Effective only for regular access patterns

3

Aggressive Out-of-Order Execution

• Significantly increase #in-flight instructions
through extensive instruction window
resources
– Issue queue, reorder buffer, load/store queue

• Allow parallel memory accesses by executing

cache-miss loads as early as possible
– Reduce effective memory access latency
– MLP: memory-level parallelism

4

Advantage and Disadvantage

• Advantage
– Data fetch is accurate
– Simple extension of conventional processor

• Disadvantage
– Large resources lengthen clock cycle time

5

Outline

• Tradeoff Involved in Enlarging Window Resources
for Aggressive Out-of-Order Execution

• Dynamic Instruction Window Resizing

• Evaluation

• Conclusion

6

Performance Problem in Enlarged
Window Resources

• Large window resources lengthen the clock cycle time
– Can be solved by pipelining resources

• Prevent ILP from being exploited

– Pipelined issue queue cannot issue dependent instructions
back-to-back

– Reduce IPC

• Tradeoff
– Large window: beneficial for MLP, but harmful for ILP
– Small window: beneficial for ILP, but cannot exploit MLP

7

Example Illustrating Tradeoff

・Large window is beneficial,
 even if it is pipelined
・MLP is exploited

・Large window is harmful,
 because IQ is pipelined

0
0.5

1
1.5

2
2.5

3
3.5

64/1 160/2 256/2

Re
la

tiv
e

IP
C

Issue queue size/Pipeline depth

libquantum (memory-intensive)

0

0.2

0.4

0.6

0.8

1

1.2

64/1 160/2 256/2

Re
la

tiv
e

IP
C

Issue queue size/Pipeline depth

gcc (compute-intensive)

8

Outline

• Tradeoff Involved in Enlarging Window Resources
for Aggressive Out-of-Order Execution

• Dynamic Instruction Window Resizing

• Evaluation

• Conclusion

9

Dynamic Instruction Window Resizing

• Adapt window size to available parallelism
– ILP or MLP

• As more exploitable MLP is predicted

– Window resources are enlarged and pipeline depth is
increased

• If prediction indicates less MLP is exploited (= ILP
is more valuable)
– Window resources are shrunk and pipeline depth is

decreased

10

Prediction when MLP is Exploitable

• If an LLC miss occurs once
– Predict that MLP is exploitable for a while

• If memory latency has lapsed after the last LLC

miss
– Predict that MLP will not be exploitable

11

Rationale of Prediction

• LLC misses are typically clustered

0

5

10

15

20

25

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

84
0

88
0

92
0

96
0

10
00

LL
C

m
is

s
oc

cu
rr

en
ce

 [%
]

Interval from previous LLC miss [cycles]

soplex

12

Term: level

• Instruction window resource level
– {size, pipeline-depth} of the resource

• As level number increases
– Size increases
– Each resource is pipelined so that it does not

increase the clock cycle time

13

What is Level Transition?

When the current size is 64 entries with 1-stage pipeline,
and we enlarge to 160 entries with 2-stage pipeline, we
say that the level is increased or transits from 1 to 2.

Used

Physical size

0 256

14

160

Unused

64 # entry

pipe depth 2 2 1

level 1 level 2

resource

Algorithm: Put it Together

• If LLC miss occurs:
– Increase level of the resources

• If memory latency has lapsed after last LLC miss:
– Check if resources are all shrinkable
– If so, it decreases level
– Otherwise, it stops resource allocation to increase

vacancies in resources, and postpones level decrease
until shrinkable

15

Outline
• Tradeoff Involved in Enlarging Window Resources for Aggressive Out-

of-Order Execution

• Dynamic Instruction Window Resizing

• Evaluation
– Environment
– IPC
– Energy Efficiency
– Cost Efficiency
– Comparison with Runahead Execution

• Conclusion

16

Configuration of Base Processor

Architecture type Intel P6

Issue width 4

ROB 128 entries

IQ 64 entries

LSQ 64 entries

L1 I-cache 64KB, 2-way, 32B line

L1 D-cache 64KB, 2-way, 32B line, 2 ports, 2-cycle hit latency

L2 cache LLC, 2MB, 4-way, 64B line, 12-cycle hit latency

Main memory 300-cycle minimum latency

Data prefetcher stride-based, 4K-entry, 4-way table, 16-data on L2 miss

17

Size and Pipeline Depth of Resources

resource parameter
level

1 2 3

IQ
entries 64 160 256

pipe depth 1 2 2

ROB
entries 128 320 512

pipe depth 1 2 2

LSQ
entries 64 160 256

pipe depth 1 2 2

• Has physically 4x lager window resources than base
• Can be configured to one of three levels
• Clock cycle time is determined by IQ delay in base processor

HSPICE

CACTI

18

Environment for Performance
Evaluation

• Simulator based on SimpleScalar 3.0a

• Alpha ISA

• SPEC2006 benchmark programs
– Mem-intensive: AVG load latency ≥ 10 cycles
– Comp-intensive: AVG load latency < 10 cycles

19

IPC: Evaluation Models
• Fixed size model: Size of window resources is FIXED

during execution. At levels 2 and 3, resources are
pipelined, which causes issue bubble and extra branch
misprediction penalty.

• Dynamic resizing model: Size of window resources is
DYNAMICALLY RESIZED. At levels 2 and 3, resources are
pipelined, which causes issue bubble and extra branch
misprediction penalty.

• Ideal model: Same as the fixed size model, but NOT
pipelined. No penalty related to pipelining is imposed.

20

IPC: Fixed Size Model

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

GM memory-intensive

pipelined

ideal

0

0.2

0.4

0.6

0.8

1

1.2

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

GM compute-intensive

pipelined

ideal

• mem-intensive programs: Level 3 achieves best performance.
MLP is exploited aggressively with a large window.

• comp-intensive programs: Performance is not so sensitive
 to level, but level 1 is the best.
• Best resource level is different depending on program,
 when the size is fixed. 21

IPC: Dynamic Resizing Model

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

GM memory-intensive

pipelined

ideal

0

0.2

0.4

0.6

0.8

1

1.2

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

GM compute-intensive

pipelined

ideal

• Dynamic resizing model achieves as good as best performance
for levels 1 to 3 of fixed size model.

• Imply good adaptability
• 21% speedup for all programs

48%
4%

22

IPC: Ideal Model

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

GM memory-intensive

pipelined

ideal

0

0.2

0.4

0.6

0.8

1

1.2

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

GM compute-intensive

pipelined

ideal

• No significant degradation in dynamic resizing model
• Imply good adaptability

-3% -3%

23

Samples from Memory-intensive
Programs

24

0

0.5

1

1.5

2

2.5

3

3.5

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

libquantum

pipelined

ideal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

lev1 lev2 lev3

Fix Res
Re

la
tiv

e
IP

C

soplex

pipelined

ideal

Samples from Compute-intensive
Programs

25

0

0.2

0.4

0.6

0.8

1

1.2

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

gcc

pipelined

ideal

0

0.2

0.4

0.6

0.8

1

1.2

lev1 lev2 lev3

Fix Res

Re
la

tiv
e

IP
C

sjeng

pipelined

ideal

Energy Efficiency: Assumption

• Performance/Energy ∝1/EDP

• Consumed energy is derived using McPAT

• 32nm LSI technology

• Temperature of 350K

26

Energy Efficiency: Results

• Power is increased, but perf is improved ⇒ Better energy efficiency
• Memory-intensive: 36% better
• Compute-intensive: 8% worse
• Overall: 8% better

0

1

2

3

4

5

6

lib
qu

an
tu

m

om
ne

tp
p

Ge
m

sF
DT

D

lb
m

le
sli

e3
d

m
ilc

so
pl

ex

sp
hi

nx
3

GM
 m

em gc
c

go
bm

k

sje
ng

bw
av

es

de
al

II

to
nt

o

GM
 c

om
p

GM
 a

llRe
la

tiv
e

pe
rf

or
m

an
ce

/e
ne

rg
y

ra
tio

 memory-intensive compute-intensive

27

Cost Efficiency: Assumption

• Calculate area using McPAT

• 32nm LSI technology

28

Cost Efficiency: Results

Additional cost

value (per core) 1.6mm2

vs. base core 6%

vs. Sandy Bridge core 8%

vs. Sandy Bridge chip 3%

Speedup

achieved 21%

expected by Pollack’s law 3%

augmented L2 cache 1%

2MB, 4-way → 2.5MB, 5-way
(increased cost is 1.3x greater than the additional cost)

Good cost/performance ratio,
that far exceeds that based on Pollack’s law

29

Background on Runahead Execution
• Features

– Exploit MLP by pre-execution
– Can also exploit ILP because it requires only a small instruction window

• When an L2 cache miss occurs
– Checkpoint architecture state and enter runahead mode

• In runahead mode
– Instructions are speculatively executed
– If another L2 miss occurs, MLP is exploited by overlapping main memory

access with the triggered load access
• Runahead mode ends when the original L2 miss is resolved, and normal

execution restarts from the checkpoint

• Practical
– Simple
– Accommodate existing architecture
– Adopted in SunMicro Rock and IBM Power6

30

Comparison with RA: Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Re
la

tiv
e

IP
C

runahead

resizing

3.
7

3.
2 memory-intensive

compute-intensive
8%

1%

• Runahead that has an EXCLUSIVE period for MLP exploitation
 achieves better performance in very mem-intensive programs.
• Resizing achieves better performance in moderately mem-intensive
 because it can exploit ILP and MLP SIMULTANEOUSLY. 31

Conclusion
• Dynamic instruction window resizing

– Exploit ILP and MLP adaptively
– Based on prediction of available parallelism

• Features
– Very simple
– Very practical

• Our scheme achieves
– Performance level similar to the best performance

achieved with fix-sized resources
– 21% speedup
– 6% extra cost of a core, or 3% of an entire proc chip
– 8% better energy efficiency

32

