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Single-Thread Performance

* |n the past: Pollack’s law

— Performance improvement oc varea

* Recently: little improve

— Despite ever increasing transistor budget

e Use increased transistor budget effectively to
improve single-thread performance



Memory Wall

* Large speed gap between processor and main
memory

e Conventional solutions:
— Large cache
* Expensive: several MB is not enough

— Hardware prefetcher

 Effective only for regular access patterns



Aggressive Out-of-Order Execution

* Significantly increase #in-flight instructions
through extensive instruction window
resources

— Issue queue, reorder buffer, load/store queue

* Allow parallel memory accesses by executing
cache-miss loads as early as possible

— Reduce effective memory access latency
— MLP: memory-level parallelism



Advantage and Disadvantage

* Advantage
— Data fetch is accurate
— Simple extension of conventional processor

* Disadvantage

— Large resources lengthen clock cycle time
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Performance Problem in Enlarged
Window Resources

e Large window resources lengthen the clock cycle time
— Can be solved by pipelining resources

* Prevent ILP from being exploited

— Pipelined issue queue cannot issue dependent instructions
back-to-back

— Reduce IPC

 Tradeoff

— Large window: beneficial for MLP, but harmful for ILP
— Small window: beneficial for ILP, but cannot exploit MLP



Example lllustrating Tradeoff

libquantum (memory-intensive) gcc (compute-intensive)
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“MLP is exploited
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Dynamic Instruction Window Resizing

* Adapt window size to available parallelism
— ILP or MLP

* As more exploitable MLP is predicted

— Window resources are enlarged and pipeline depth is
increased

 If prediction indicates less MLP is exploited (= ILP
is more valuable)

— Window resources are shrunk and pipeline depth is
decreased



Prediction when MLP is Exploitable

* |f an LLC miss occurs once
— Predict that MLP is exploitable for a while

* |f memory latency has lapsed after the last LLC
miss
— Predict that MLP will not be exploitable



Rationale of Prediction

* LLC misses are typically clustered
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Term: level

* Instruction window resource level

— {size, pipeline-depth} of the resource

e As level number increases
— Size increases

— Each resource is pipelined so that it does not
increase the clock cycle time



What is Level Transition?

Physical size

resource

#entry 256 160 64 0
pipe depth 2 2 1
level 2 level 1

When the current size is 64 entries with 1-stage pipeline,

and we enlarge to 160 entries with 2-stage pipeline, we
say that the level is increased or transits from 1 to 2.
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Algorithm: Put it Together

e |f LLC miss occurs:

— Increase level of the resources

* If memory latency has lapsed after last LLC miss:
— Check if resources are all shrinkable
— If so, it decreases level

— Otherwise, it stops resource allocation to increase
vacancies in resources, and postpones level decrease
until shrinkable
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Configuration of Base Processor

Architecture type Intel P6

Issue width 4

ROB 128 entries

1Q 64 entries

LSQ 64 entries

L1 I-cache 64KB, 2-way, 32B line

L1 D-cache 64KB, 2-way, 32B line, 2 ports, 2-cycle hit latency
L2 cache LLC, 2MB, 4-way, 64B line, 12-cycle hit latency
Main memory 300-cycle minimum latency

Data prefetcher stride-based, 4K-entry, 4-way table, 16-data on L2 miss



Size and Pipeline Depth of Resources
v

resource parameter

1 2 3
. entries 64 160 256
pipe depth 1 2 2 <—— HSPICE
entries 128 320 512
ROB
pipe depth 1 2 2 <—— CACTI
entries 64 160 256
LSQ
pipe depth 1 2 2

* Has physically 4x lager window resources than base
* Can be configured to one of three levels
* Clock cycle time is determined by IQ delay in base processor
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Environment for Performance
Evaluation

e Simulator based on SimpleScalar 3.0a

* Alpha ISA

 SPEC2006 benchmark programs

— Meme-intensive: AVG load latency = 10 cycles
— Comp-intensive: AVG load latency < 10 cycles



IPC: Evaluation Models

* Fixed size model: Size of window resources is FIXED
during execution. At levels 2 and 3, resources are
pipelined, which causes issue bubble and extra branch
misprediction penalty.

* Dynamic resizing model: Size of window resources is
DYNAMICALLY RESIZED. At levels 2 and 3, resources are
pipelined, which causes issue bubble and extra branch
misprediction penalty.

* Ideal model: Same as the fixed size model, but NOT
pipelined. No penalty related to pipelining is imposed.



IPC: Fixed Size Model
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meme-intensive programs: Level 3 achieves best performance.

MLP is exploited aggressively with a large window.

when the size is fixed.

comp-intensive programs: Performance is not so sensitive
to level, but level 1 is the best.

Best resource level is different depending on program,

21



IPC: Dynamic Resizing Model
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Dynamic resizing model achieves as good as best performance
for levels 1 to 3 of fixed size model.

Imply good adaptability
21% speedup for all programs
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Samples from Memory-intensive
Programs

libquantum soplex
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Relative IPC

Samples from Compute-intensive
Programs
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Energy Efficiency: Assumption

Performance/Energy o<1/EDP

Consumed energy is derived using McPAT
32nm LSI technology

Temperature of 350K



Energy Efficiency: Results

compute-intensive

memory-intensive

~

Relative performance/energy
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GemsFDTD

Power is increased, but perf is improved = Better energy efficiency
Memory-intensive: 36% better

Compute-intensive: 8% worse

Overall: 8% better
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Cost Efficiency: Assumption

e Calculate area using McPAT

* 32nm LS| technology



Cost Efficiency: Results

value (per core) 1.6mm?

vs. base core 6%
Additional cost

vs. Sandy Bridge core 8%

vs. Sandy Bridge chip 3%

achieved 21%
Speedup expected by Pollack’s law 3%

augmented L2 cache 1%

2MB, 4-way - 2.5MB, 5-way
(increased cost is 1.3x greater than the additional cost)

Good cost/performance ratio,
that far exceeds that based on Pollack’s law



Background on Runahead Execution

Features

— Exploit MLP by pre-execution

— Can also exploit ILP because it requires only a small instruction window
When an L2 cache miss occurs

— Checkpoint architecture state and enter runahead mode
In runahead mode

— Instructions are speculatively executed

— If another L2 miss occurs, MLP is exploited by overlapping main memory
access with the triggered load access

Runahead mode ends when the original L2 miss is resolved, and normal
execution restarts from the checkpoint

Practical
— Simple
— Accommodate existing architecture
— Adopted in SunMicro Rock and IBM Power6



Comparison with RA: Results
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* Runahead that has an EXCLUSIVE period for MLP exploitation
achieves better performance in very mem-intensive programs.

* Resizing achieves better performance in moderately mem-intensive

because it can exploit ILP and MLP SIMULTANEOUSLY. .



Conclusion

* Dynamic instruction window resizing

— Exploit ILP and MLP adaptively

— Based on prediction of available parallelism
* Features

— Very simple

— Very practical
* QOur scheme achieves

— Performance level similar to the best performance
achieved with fix-sized resources

— 21% speedup
— 6% extra cost of a core, or 3% of an entire proc chip
— 8% better energy efficiency



