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Single-Thread Performance 

• In  the  past:  Pollack’s  law 
– Performance improvement ∝ 

• Recently: little improve 
– Despite ever increasing transistor budget 

 
• Use increased transistor budget effectively to 

improve single-thread performance 

𝑎𝑟𝑒𝑎 
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Memory Wall 

• Large speed gap between processor and main 
memory 
 

• Conventional solutions: 
– Large cache 

• Expensive: several MB is not enough 

– Hardware prefetcher 
• Effective only for regular access patterns 
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Aggressive Out-of-Order Execution 

• Significantly increase #in-flight instructions 
through extensive instruction window 
resources 
– Issue queue, reorder buffer, load/store queue 

 
• Allow parallel memory accesses by executing 

cache-miss loads as early as possible 
– Reduce effective memory access latency 
– MLP: memory-level parallelism 
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Advantage and Disadvantage 

• Advantage 
– Data fetch is accurate 
– Simple extension of conventional processor 

 

• Disadvantage 
– Large resources lengthen clock cycle time 
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Outline 

• Tradeoff Involved in Enlarging Window Resources 
for Aggressive Out-of-Order Execution 
 

• Dynamic Instruction Window Resizing 
 

• Evaluation 
 
• Conclusion 
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Performance Problem in Enlarged 
Window Resources 

• Large window resources lengthen the clock cycle time 
– Can be solved by pipelining resources 

 
• Prevent ILP from being exploited 

– Pipelined issue queue cannot issue dependent instructions 
back-to-back 

– Reduce IPC 
 

• Tradeoff 
– Large window: beneficial for MLP, but harmful for ILP 
– Small window: beneficial for ILP, but cannot exploit MLP 
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Example Illustrating Tradeoff 

・Large window is beneficial,  
   even if it is pipelined 
・MLP is exploited 

・Large window is harmful,  
   because IQ is pipelined 
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Outline 

• Tradeoff Involved in Enlarging Window Resources 
for Aggressive Out-of-Order Execution 
 

• Dynamic Instruction Window Resizing 
 

• Evaluation 
 
• Conclusion 
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Dynamic Instruction Window Resizing 

• Adapt window size to available parallelism 
– ILP or MLP 

 
• As more exploitable MLP is predicted 

– Window resources are enlarged and pipeline depth is 
increased 
 

• If prediction indicates less MLP is exploited (= ILP 
is more valuable) 
– Window resources are shrunk and pipeline depth is 

decreased 
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Prediction when MLP is Exploitable 

• If an LLC miss occurs once 
– Predict that MLP is exploitable for a while 

 
• If memory latency has lapsed after the last LLC 

miss 
– Predict that MLP will not be exploitable 
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Rationale of Prediction 

• LLC misses are typically clustered 
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Term: level 

• Instruction window resource level 
– {size, pipeline-depth} of the resource 

 

• As level number increases 
– Size increases 
– Each resource is pipelined so that it does not 

increase the clock cycle time 
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What is Level Transition? 

When the current size is 64 entries with 1-stage pipeline, 
and we enlarge to 160 entries with 2-stage pipeline, we 
say that the level is increased or transits from 1 to 2. 

Used 

Physical size 

0 256 
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160 

Unused 

64 # entry 

pipe depth 2 2 1 

level 1 level 2 

resource 



Algorithm: Put it Together 

• If LLC miss occurs: 
– Increase level of the resources 

 

• If memory latency has lapsed after last LLC miss: 
– Check if resources are all shrinkable 
– If so, it decreases level 
– Otherwise, it stops resource allocation to increase 

vacancies in resources, and postpones level decrease 
until shrinkable 
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Outline 
• Tradeoff Involved in Enlarging Window Resources for Aggressive Out-

of-Order Execution 
 

• Dynamic Instruction Window Resizing 
 

• Evaluation 
– Environment 
– IPC 
– Energy Efficiency 
– Cost Efficiency 
– Comparison with Runahead Execution 

 
• Conclusion 
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Configuration of Base Processor 

Architecture type Intel P6 

Issue width 4 

ROB 128 entries 

IQ 64 entries 

LSQ 64 entries 

L1 I-cache 64KB, 2-way, 32B line 

L1 D-cache 64KB, 2-way, 32B line, 2 ports, 2-cycle hit latency 

L2 cache LLC, 2MB, 4-way, 64B line, 12-cycle hit latency 

Main memory 300-cycle minimum latency 

Data prefetcher stride-based, 4K-entry, 4-way table, 16-data on L2 miss 
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Size and Pipeline Depth of Resources 

resource parameter 
level 

1 2 3 

IQ 
entries 64 160 256 

pipe depth 1 2 2 

ROB 
entries 128 320 512 

pipe depth 1 2 2 

LSQ 
entries 64 160 256 

pipe depth 1 2 2 

• Has physically 4x lager window resources than base 
• Can be configured to one of three levels 
• Clock cycle time is determined by IQ delay in base processor 

HSPICE 

CACTI 
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Environment for Performance 
Evaluation 

• Simulator based on SimpleScalar 3.0a 
 

• Alpha ISA 
 

• SPEC2006 benchmark programs 
– Mem-intensive: AVG load latency ≥  10 cycles 
– Comp-intensive: AVG load latency < 10 cycles 
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IPC: Evaluation Models 
• Fixed size model: Size of window resources is FIXED 

during execution. At levels 2 and 3, resources are 
pipelined, which causes issue bubble and extra branch 
misprediction penalty. 
 

• Dynamic resizing model: Size of window resources is 
DYNAMICALLY RESIZED. At levels 2 and 3, resources are 
pipelined, which causes issue bubble and extra branch 
misprediction penalty. 
 

• Ideal model: Same as the fixed size model, but NOT 
pipelined. No penalty related to pipelining is imposed. 
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IPC: Fixed Size Model 
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• mem-intensive programs: Level 3 achieves best performance. 
MLP is exploited aggressively with a large window. 

• comp-intensive programs: Performance is not so sensitive  
     to level, but level 1 is the best. 
• Best resource level is different depending on program,  
     when the size is fixed. 21 



IPC: Dynamic Resizing Model 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

lev1 lev2 lev3

Fix Res

Re
la

tiv
e 

IP
C 

GM memory-intensive 

pipelined

ideal

0

0.2

0.4

0.6

0.8

1

1.2

lev1 lev2 lev3

Fix Res

Re
la

tiv
e 

IP
C 

GM compute-intensive 

pipelined

ideal

• Dynamic resizing model achieves as good as best performance 
for levels 1 to 3 of fixed size model. 

• Imply good adaptability 
• 21% speedup for all programs 

48% 
4% 
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IPC: Ideal Model 
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• No significant degradation in dynamic resizing model 
• Imply good adaptability 

-3% -3% 
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Samples from Memory-intensive 
Programs 

24 
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Samples from Compute-intensive 
Programs 
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Energy Efficiency: Assumption 

• Performance/Energy ∝1/EDP 
 

• Consumed energy is derived using McPAT 
 

• 32nm LSI technology 
 

• Temperature of 350K 
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Energy Efficiency: Results 

• Power is increased, but perf is improved ⇒ Better energy efficiency 
• Memory-intensive: 36% better  
• Compute-intensive: 8% worse 
• Overall: 8% better  
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Cost Efficiency: Assumption 

 
• Calculate area using McPAT 

 
• 32nm LSI technology 
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Cost Efficiency: Results 

Additional cost 

value (per core) 1.6mm2 

vs. base core 6% 

vs. Sandy Bridge core 8% 

vs. Sandy Bridge chip 3% 

Speedup 

achieved 21% 

expected  by  Pollack’s  law 3% 

augmented L2 cache 1% 

2MB, 4-way →  2.5MB, 5-way  
(increased cost is 1.3x greater than the additional cost) 

Good cost/performance ratio,  
that  far  exceeds  that  based  on  Pollack’s  law 
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Background on Runahead Execution 
• Features 

– Exploit MLP by pre-execution 
– Can also exploit ILP because it requires only a small instruction window 

• When an L2 cache miss occurs 
– Checkpoint architecture state and enter runahead mode 

• In runahead mode 
– Instructions are speculatively executed 
– If another L2 miss occurs, MLP is exploited by overlapping main memory 

access with the triggered load access 
• Runahead mode ends when the original L2 miss is resolved, and normal 

execution restarts from the checkpoint 
 

• Practical 
– Simple 
– Accommodate existing architecture 
– Adopted in SunMicro Rock and IBM Power6 
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Comparison with RA: Results 
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• Runahead that has an EXCLUSIVE period for MLP exploitation  
     achieves better performance in very mem-intensive programs. 
• Resizing achieves better performance in moderately mem-intensive 
     because it can exploit ILP and MLP SIMULTANEOUSLY. 31 



Conclusion 
• Dynamic instruction window resizing 

– Exploit ILP and MLP adaptively 
– Based on prediction of available parallelism 

• Features 
– Very simple 
– Very practical 

• Our scheme achieves 
– Performance level similar to the best performance 

achieved with fix-sized resources 
– 21% speedup 
– 6% extra cost of a core, or 3% of an entire proc chip 
– 8% better energy efficiency 
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