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Problem to Solve

e Difficult to improve single-thread performance in
memory-intensive programs

— Memory wall

* Very large instruction window can overcome this
problem by exploiting MLP
— This degrades the clock cycle time

— Can be solved by pipelining, but...

— Pipelining prevents ILP from being exploited, degrading
IPC in compute-intensive program



Dynamic Instruction Window Resizing

* Adapt window size to available parallelism
— ILP or MLP

* As more exploitable MLP is predicted

— Window resources are enlarged and pipeline depth is
increased

 If prediction indicates less MLP is exploited (= ILP
is more valuable)

— Window resources are shrunk and pipeline depth is
decreased



Prediction when MLP is Exploitable

e |f an LLC miss occurs once
— Predict that MLP is exploitable for a while

* |f memory latency has lapsed after the last LLC
miss
— Predict that MLP will not be exploitable

e Rationale
— LLC misses are clustered in terms of time
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Dynamic resizing model achieves as good as best performance
for levels 1 to 3 of fixed size model.

It achieves similar performance to ideal model (no pipelined).
Imply good adaptability

21% speedup for all programs °



Energy Efficiency
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Power is increased, but perf is improved = Better energy efficiency
Memory-intensive: 36% better

Compute-intensive: 8% worse

Overall: 8% better



Cost Efficiency

value (per core) 1.6mm?

vs. base core 6%
Additional cost

vs. Sandy Bridge core 8%

vs. Sandy Bridge chip 3%

achieved 21%
Speedup expected by Pollack’s law 3%

augmented L2 cache 1%

2MB, 4-way - 2.5MB, 5-way
(increased cost is 1.3x greater than the additional cost)

Good cost/performance ratio,
that far exceeds that based on Pollack’s law



Conclusion

* Dynamic instruction window resizing

— Exploit ILP and MLP adaptively

— Based on prediction of available parallelism
* Features

— Very simple

— Very practical
* QOur scheme achieves

— Performance level similar to the best performance
achieved with fix-sized resources

— 21% speedup
— 6% extra cost of a core, or 3% of an entire proc chip
— 8% better energy efficiency



