#### MLP-Aware Dynamic Instruction Window Resizing for Adaptively Exploiting Both ILP and MLP

Yuya Kora Kyohei Yamaguchi Hideki Ando

Nagoya University

## Problem to Solve

• Difficult to improve single-thread performance in memory-intensive programs

– Memory wall

- Very large instruction window can overcome this problem by exploiting MLP
  - This degrades the clock cycle time
  - Can be solved by pipelining, but...
  - Pipelining prevents ILP from being exploited, degrading IPC in compute-intensive program

#### **Dynamic Instruction Window Resizing**

- Adapt window size to available parallelism
   ILP or MLP
- As more exploitable MLP is predicted
  - Window resources are enlarged and pipeline depth is increased
- If prediction indicates less MLP is exploited (= ILP is more valuable)
  - Window resources are shrunk and pipeline depth is decreased

## Prediction when MLP is Exploitable

- If an LLC miss occurs once
  Predict that MLP is exploitable for a while
- If memory latency has lapsed after the last LLC miss
  - Predict that MLP will not be exploitable
- Rationale
  - LLC misses are clustered in terms of time

IPC



- Dynamic resizing model achieves as good as best performance for levels 1 to 3 of fixed size model.
- It achieves similar performance to ideal model (no pipelined).
- Imply good adaptability
- 21% speedup for all programs

## **Energy Efficiency**



- Power is increased, but perf is improved  $\Rightarrow$  Better energy efficiency
- Memory-intensive: 36% better
- Compute-intensive: 8% worse
- Overall: 8% better

### **Cost Efficiency**

| Additional cost | value (per core)          | 1.6mm <sup>2</sup> |
|-----------------|---------------------------|--------------------|
|                 | vs. base core             | 6%                 |
|                 | vs. Sandy Bridge core     | 8%                 |
|                 | vs. Sandy Bridge chip     | 3%                 |
| Speedup         | achieved                  | 21%                |
|                 | expected by Pollack's law | 3%                 |
|                 | augmented L2 cache        | 1%                 |
|                 |                           |                    |

2MB, 4-way  $\rightarrow$  2.5MB, 5-way (increased cost is 1.3x greater than the additional cost)

Good cost/performance ratio, that far exceeds that based on Pollack's law

# Conclusion

- Dynamic instruction window resizing
  - Exploit ILP and MLP adaptively
  - Based on prediction of available parallelism
- Features
  - Very simple
  - Very practical
- Our scheme achieves
  - Performance level similar to the best performance achieved with fix-sized resources
  - 21% speedup
  - 6% extra cost of a core, or 3% of an entire proc chip
  - 8% better energy efficiency