MLP-Aware Dynamic Instruction
Window Resizing for Adaptively
Exploiting Both ILP and MLP

Yuya Kora
Kyohei Yamaguchi
Hideki Ando

Nagoya University

Problem to Solve

e Difficult to improve single-thread performance in
memory-intensive programs

— Memory wall

* Very large instruction window can overcome this
problem by exploiting MLP
— This degrades the clock cycle time

— Can be solved by pipelining, but...

— Pipelining prevents ILP from being exploited, degrading
IPC in compute-intensive program

Dynamic Instruction Window Resizing

* Adapt window size to available parallelism
— ILP or MLP

* As more exploitable MLP is predicted

— Window resources are enlarged and pipeline depth is
increased

 If prediction indicates less MLP is exploited (= ILP
is more valuable)

— Window resources are shrunk and pipeline depth is
decreased

Prediction when MLP is Exploitable

e |f an LLC miss occurs once
— Predict that MLP is exploitable for a while

* |f memory latency has lapsed after the last LLC
miss
— Predict that MLP will not be exploitable

e Rationale
— LLC misses are clustered in terms of time

Relative IPC
o o o T
» O 0O L N M O

o
o N

IPC

GM memory-intensive GM compute-intensive

=
IN)

[any

Relative IPC
o o
[e)) o]

©
>

 pipelined

©
(N}

=fi—ideal

o

64/1 160/2 256/2 64/1 ‘ 160/2 ‘ 256/2
Issue queue size/pipe |Dynamic Issue queue size/pipe |Dynamic
depth resizing depth resizing
Fixed size Fixed size

 pipelined

== ideal

Dynamic resizing model achieves as good as best performance
for levels 1 to 3 of fixed size model.

It achieves similar performance to ideal model (no pipelined).
Imply good adaptability

21% speedup for all programs °

Energy Efficiency

memory-intensive compute-intensive

Relative performance/energy

gcc N

libquantum
omnetpp
GemsFDTD
lbm
leslie3d
milc
soplex
sphinx3
GM mem
gobmk
sjeng
bwaves
dealll
tonto

GM comp
GM all

Power is increased, but perf is improved = Better energy efficiency
Memory-intensive: 36% better

Compute-intensive: 8% worse

Overall: 8% better

Cost Efficiency

value (per core) 1.6mm?

vs. base core 6%
Additional cost

vs. Sandy Bridge core 8%

vs. Sandy Bridge chip 3%

achieved 21%
Speedup expected by Pollack’s law 3%

augmented L2 cache 1%

2MB, 4-way - 2.5MB, 5-way
(increased cost is 1.3x greater than the additional cost)

Good cost/performance ratio,
that far exceeds that based on Pollack’s law

Conclusion

* Dynamic instruction window resizing

— Exploit ILP and MLP adaptively

— Based on prediction of available parallelism
* Features

— Very simple

— Very practical
* QOur scheme achieves

— Performance level similar to the best performance
achieved with fix-sized resources

— 21% speedup
— 6% extra cost of a core, or 3% of an entire proc chip
— 8% better energy efficiency

