
sa paMICRO 2013

Adrian Sampson
Jacob Nelson
Karin Strauss
Luis Ceze

Approximate Storage
in Solid-State Memories

University of Washington
Microsoft Research & UW
University of Washington

Vector
ProcessorGPUCPU

Compiler

Runtime

Accelerator

Compute

Display

DiskNetwork

I/O Storage

Memory

Compute

Disk

I/O Storage

Memory

0

%

2

0

%

4

0

%

6

0

%

8

0

%

1

0

0

%

1

.

6

1

.

8

2

2

.

2

2

.

4

2

.

6

2

.

8

3

o

u

t

p

u

t

q

u

a

l

i

t

y

l

o

s

s

a

v

e

r

a

g

e

w

r

i

t

e

s

t

e

p

s

m

c

f

f

t

z

x

i

n

g

s

m

m

l

u

j

m

e

i

n

t

s

o

r

r

a

y

t

r

a

c

e

r

(a) Main-memory applications with approximate MLC.

0

%

2

0

%

4

0

%

6

0

%

8

0

%

1

0

0

%

1

.

6

1

.

8

2

2

.

2

2

.

4

2

.

6

2

.

8

3

o

u

t

p

u

t

q

u

a

l

i

t

y

l

o

s

s

a

v

e

r

a

g

e

w

r

i

t

e

s

t

e

p

s

s

v

m

i

m

a

g

e

s

e

n

s

o

r

l

o

g

a

n

n

(b) Persistent data sets with approximate MLC.Figure 6: Output degradation for each benchmark using the ap-proximate MLC technique. The horizontal axis shows the averagenumber of iterations per write. The vertical axis is the output qualityloss as defined by each application’s quality metric. Quality lossis averaged over 100 executions in (a) and 10 in (b); the error barsshow the standard error of the mean.

0

%

2

0

%

4

0

%

6

0

%

8

0

%

1

0

0

%

f

f

t

j

m

e

i

n

t

l

u

m

c

r

a

y

t

r

.

s

m

m

s

o

r

z

x

i

n

g

f

r

a

c

t

i

o

n

o

f

t

o

t

a

l

a

p

p

r

o

x

i

m

a

t

e

w

r

i

t

e

s

a

p

p

r

o

x

i

m

a

t

e

f

o

o

t

p

r

i

n

t

Figure 7: Proportions of approximate writes and approximate datain each main-memory benchmark.

reduce contention and therefore also impact read latency, priorevaluations have found that they can lead to large IPC increases [16,19]. Since fewer programming pulses are used per write and writepulses make up a large portion of PCM energy, the overall energye�ciency of the memory array is improved.

Impact of encoding.
Section 3.2 examines two di↵erent strategies for encoding nu-meric values for storage on approximate MLCs. In the first, the bitsfrom multiple cells are concatenated to form whole words; in thesecond, each value is “striped” across constituent cells so that thehighest bits of the value map to the highest bits of the cells. Theresults given above use the latter encoding, but we also evaluatedthe simpler code for comparison.

The striped code leads to better output quality on average. Forthree intermediate write speeds, using that code reduces the meanoutput error across all applications from 1.1% to 0.4%, from 3.6%to 3.0%, and from 11.0% to 9.0% with respect to the naive code.We also performed two-sample t-tests to assess the di↵erencein output quality between the two coding strategies for each of 13write speed configurations. For nearly every application, the stripedcode had a statistically significant positive e↵ect on quality moreoften than a negative one. The only exception is
m

c, a Monte Carlosimulation, in which the e↵ect of the striped code was inconsistent(positive at some write speeds and negative for others).While the striped code is imperfect, as discussed in Section 3.2,it fares better than the naive code in practice since it lowers theprobability of errors in the high-order bits of words.

Density increase.
We experimented with adding more levels to an approximateMLC. In a precise MLC, increasing cell density requires more pre-cise writes, but approximate MLCs can keep average write timeconstant. Our experiments show acceptable error rates when sixlevels are used (and no other parameters are changed). A non-power-of-two MLC requires additional hardware, similar to binary-codeddecimal (BCD) circuitry, to implement even the naive code fromSection 3.2 but can still yield density benefits. For example, a 512-bit block can be stored in d 512

log 6 e = 199 six-level cells (compared to256 four-level cells). With the same average number of write itera-tions (3.03), many of our benchmarks see very little error:
j

m

e

i

n

t,
m

c,
r

a

y

t

r

a

c

e

r,
s

m

m, and the four persistent-storage benchmarks seeerror rates between 0.1% and 4.2%. The other benchmarks,
f

f

t,
l

u,
s

o

r, and
z

x

i

n

g, see high error rates, suggesting that density increaseshould only be used with certain tolerant applications.

Impact of drift.
Previous work has suggested that straightforward MLC storage inPCM can be untenable over long periods of time [46]. Approximatestorage provides an opportunity to reduce the frequency of scrub-bing necessary by tolerating occasional retention errors. To studythe resilience of approximate MLC storage to drift, we varied themodeled retention time (the interval between write and read) andexamined the resulting application-level quality loss. Recall thatthe results above assume a retention time of 105 seconds, or aboutone day, for every read operation; we examined retention timesbetween 101 and 109 seconds (about 80 years) for an intermediateapproximate MLC configuration using an average of 2.1 cycles perwrite. For the main-memory applications, in which typical retentiontimes are likely to be far less than one day, we see very little qualityloss (1% or less) for retention times of 104 seconds or shorter. Forthe persistent-storage benchmarks, quality loss remains under 10%for at least 106 seconds and, in the case of

i

m

a

g

e, up to 109 seconds.

0

%

2

0

%

4

0

%

6

0

%

8

0

%

1

0

0

%

2

.

2

2

.

4

2

.

6

2

.

8

3

3

.

2

3

.

4

o

u

t

p

u

t

q

u

a

l

i

t

y

l

o

s

s

w

r

i

t

e

s

⇥107

r

a

y

t

r

a

c

e

r

z

x

i

n

g

f

f

t

j

m

e

i

n

t

m

c

s

m

m

l

u

s

o

r

(a) Main-memory applications using failed blocks.

0

%

2

0

%

4

0

%

6

0

%

8

0

%

1

0

0

%

4

4

.

5

5

5

.

5

6

6

.

5

o

u

t

p

u

t

q

u

a

l

i

t

y

l

o

s

s

w

r

i

t

e

s

⇥107

a

n

n

i

m

a

g

e

s

e

n

s

o

r

l

o

g

s

v

m

(b) Persistent data sets using failed blocks.

Figure 9: Output quality degradation for each benchmark when

using the failed-block recycling technique. The horizontal axis is the

number of complete overwrites the array has experienced, indicating

the stage of wear-out. The vertical axis is an application-specific

error metric.

memory constantly written at this rate, these savings translate to

extending the array’s lifetime from 5.2 years to 6.5 years.

Impact of bit priority.

The above results use our type-aware prioritized correction mech-

anism (Section 4.1). To evaluate the impact of bit prioritization,

we ran a separate set of experiments with this mechanism disabled

to model a system that just corrects the errors that occur earliest.

We examine the di↵erence in output quality at each wear stage and

perform a two-sample t-test to determine whether the di↵erence is

statistically significant (P < 0.01).

Bit prioritization had a statistically significant positive impact

on output quality for all benchmarks except m

c

. In s

e

n

s

o

r

l

o

g

, for

example, bit prioritization decreases quality loss from 2.3% to 1.7%

in an early stage of wear (the leftmost point in Figure 9b). In f

f

t

, the

impact is larger: bit prioritization reduces 7.3% quality loss to 3.3%

quality loss. As with encoding for approximate MLCs, the exception

is m

c

, whose quality was (statistically significantly) improved in

only 4 of the 45 wear stages we measured while it was negatively

impacted in 6 wear stages. This benchmark is a simple Monte Carlo

method and hence may sometimes benefit from the entropy added

by failed bits. Overall, however, we conclude that bit prioritization

has a generally positive e↵ect on storage quality.

Impact of ECP budget.

The above experiments use a PCM configuration with error-

correcting pointers (ECP) [39] configured to correct two stuck bits

per 512-bit block at an overhead of 21 extra bits per block. More

aggressive error correction improves the endurance of both fully-

precise and approximate memory and amplifies the opportunity for

priority-aware correction in intermediate wear stages. To quantify

the e↵ect of increasing error correction budgets, we also evaluated

an ECP6 configuration (61 extra bits per block).

Moving from ECP2 to ECP6 extends the lifetime of a precise

memory array by 45% under main-memory wear or 17% under

persistent-storage wear. Our results for approximate main-memory

storage with ECP2 provide a portion of these benefits (18% lifetime

extension) while incurring no additional error-correction overhead.

In the persistent-storage case, the lifetime extension for approximate

storage (36%) is greater than for increasing the ECP budget.

7. RELATED WORK

Approximate storage builds on three broad categories of related

work: approximate computing, optimizing accesses to storage cells,

and tolerating failures in solid-state memories.

Approximate computing is an area of research that seeks to op-

timize the execution of error-tolerant programs using both hard-

ware [8, 12, 14,15, 24, 26] and software [2, 17, 41] techniques. Pro-

grammers control the impact of approximate execution using lan-

guage features, analyses, or program logics [5,6,12,38]. While much

of the work on approximate computing has focused on computation

itself—optimizing algorithms or processor logic—some recent work

has proposed to lower the refresh rate of DRAM [24] or the supply

voltage of SRAM [9, 14, 20]. This paper, in contrast, explores tech-

niques that take advantage of the unique properties of non-volatile

solid-state storage technologies like PCM and Flash: wear-out and

multi-level configurations. Unlike prior work on SRAM and DRAM,

we evaluate approximate storage for both transient (main memory)

and persistent (filesystem or database) data.

Prior work has also explored techniques for optimizing accesses

to PCM and Flash [19, 33] or architecting systems to e�ciently use

PCM as main memory [18,21,36,39,47]. In particular, half-wits [37]

and power fade [44] use low-voltage, error-prone Flash operations

to reduce power and energy. Similarly, retention relaxation uses

less-precise program-and-verify parameters to speed up writes to

MLC Flash cells when data has a short lifetime [23]. Approximate

MLCs complement these techniques by allowing even faster writes

when bit errors are tolerable. A system can, for example, combine

retention relaxation and approximate storage by “underestimating”

the necessary retention time of approximate data. Previous work has

also proposed adapting the density of SLC and MLC cells in main

memory [35] and persistent storage [13] deployments. While these

systems trade o↵ density for performance, energy, and endurance,

data is always stored precisely. This paper proposes MLC config-

urations that permit storage errors but improve density or access

e�ciency beyond what is possible in precise configurations.

Prior work has also considered low-overhead techniques for hid-

ing failures in memories that experience wear-out [11, 34, 39, 40].

Our failed-block recycling technique extends this prior work by

selectively relaxing error correction on memory that contains ap-

proximate data.

Themes
in approximate computing

approx

precise

Interleaving:
Programs are both

approximate & precise

LO HI

x ± y

Error mitigation:
Exploit the hardware

to minimize error

Phase-change memory (PCM)

Surpass DRAM’s
scaling limits

+

Non-volatile

Faster than flash
“Almost” as fast
as DRAM

:)

Phase-change memory (PCM)

+

:(

Write speed
& energy

Cells wear out
over time

Phase-change memory (PCM) :(

Write speed
& energy

Cells wear out
over time

Multi-level cells are denser 
but need more time and energy.

Cells wear out over time
and can no longer be used.

Phase-change memory (PCM) :

Multi-level cells are denser 
but need more time and energy 
to protect against errors.

Cells wear out over time
and can no longer be used
for precise data storage.

(

Phase-change memory (PCM) : (

Fast Dense

Phase-change memory (PCM) : (

Fast Dense

Accurate

Approximate storage in PCM

Trade off accuracy for
performance in multi-level cell
accesses.

Use worn-out memory for
approximate data instead of
throwing it away.

Approximate storage in PCM

Trade off accuracy for
performance in multi-level cell
accesses.

Use worn-out memory for
approximate data instead of
throwing it away.

1
2

Approximate storage in PCM

Trade off accuracy for
performance in multi-level cell
accesses.

Use
approximate
throwing it away.

1
2

Single-level cells

high

low

analog value digital value

0

1

Multi-level cells

high

low

analog value digital value

00

11

01

10

Writing to multi-level cells

high

low

analog value digital value

00

11

01

10
pr

ob
ab

ilit
y

Writing to multi-level cells, 
approximately

high

low

analog value digital value

00

11

01

10
pr

ob
ab

ilit
y

Speed Density

Accuracy

10

Iterative writes

high

low 00

11

01

time

target range

10

Iterative writes,
approximately

high

low 00

11

01

time

target range

10

Iterative writes,
approximately

high

low 00

11

01

time

target range

wider target range

fewer iterations to converge

faster writes
(or better density at the same speed)

Encoding to minimize error
in approximate MLC

0 0 0 0

1 cell, 4 bits

unreliable
reliable

LO HI

x ± y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lots of errors

4 cells, 16 bits

Encoding to minimize error
in approximate MLC LO HI

x ± y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lots of errors

4 cells, 16 bits

Encoding to minimize error
in approximate MLC LO HI

x ± y

Write speedup for approximate MLC

Writes are 1.7× faster on average
with quality loss under 10%

0

0.5

1

1.5

2

2.5

mc
sm

m so
r fft lu

zxi
ng

jm
ein

t

ray
tra

ce
r pa nn ml

im
ag

e
mea

n

main-memory benchmarks persistent data

be
st

 w
rit

e
sp

ee
du

p

Approximate storage in PCM

Trade off
performance in
accesses.

Use worn-out memory for
approximate data instead of
throwing it away.

Failed cells
are a fact of life

0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1

a good block

Failed cells
are a fact of life

0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1

a (tragically) failed block

Traditional error correction

0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1

corrected data block correction bits

Correction resources
are exhaustible

0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1

uncorrectable (bad) block correction bits

approximate

Prioritized error correction

0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1

uncorrectable (bad) block correction bits

approximate

LO HI

x ± y

error exposed
where it does the least harm

Lifetime extension with block recycling

Lifetime extended by 23% on average
or from about 5.2 to 6.5 years

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

mc
sm

m so
r fft lu

zxi
ng

jm
ein

t

ray
tra

ce
r pa nn ml

im
ag

e
mea

n

main-memory benchmarks persistent data

no
rm

al
iz

ed
 li

fe
tim

e
(w

rit
es

)

Compute

Display

DiskNetwork

I/O Storage

Memory

Compute

Display

DiskNetwork

I/O Storage

Memory

