ALL PROGRAMMABLE

All Programmable Devices: Not Just an FPGA Anymore

Vidya Rajagopalan

Corporate Vice President, Processing, Software, Systems and Applications Xilinx

December 11, 2013

© Copyright 2013 Xilinx

Then and Now

1985

- > 100 Logic Cells
- > 100 Flip Flops
- **>** 74 IO
- > Supply Voltage: 5V
- > 2.5 um process

More Than Moorel

- > 2.15M Logic Cells (~21K x)
- > 2.44M Flip Flops (~24K x)
- > 1200 IO (16 x), 36 SERDES
- > Supply Voltages: 8 supplies: 3.3V to 1V
- > 28nm process (Scaling ~90x)
- > 46Mb Block RAM, 21Mb LUT RAM
- > 2160 DSP Blocks

Over Time: Moore's Law at Work

FPGA P&R Runtime

CPU Trends over Time

P&R runtime improved for equivalent design by 40x, Device sizes increased by 6x

XILINX > ALL PROGRAMMABLE...

Wafer Prices Going Up

Fewer and fewer people can afford to build chips

© Copyright 2013 Xilinx

© Copyright 2013 Xilinx

XILINX ➤ ALL PROGRAMMABLE.

Zynq-7000 All Programmable SoC What Makes it So Cool? >Boots up I

- >Boots up like a processor
 - Runs software code
- CPU master controls fabric
 Configuration/Reconfiguration
- > Ease of use of a processor

>2 P's of FPGAs

- Programmability
- Parallelism

>Making possible

- Near ASIC cost and performance
- Build your own SoC
- Software Acceleration Paradigms

Zynq® - Democratizing SoCs One Chip at a Time

© Copyright 2013 Xilinx

XILINX ➤ ALL PROGRAMMABLE.

Zynq-7000 All Programmable SoC Family Applications Served

- > Existing and emerging applications
 - Image Processing
 - Signal Processing
 - Database Search (memcached)
 - etc.

> Common themes include

- Data Parallel Applications
- Signal Processing Applications
- High Bandwidth Real Time Processing
- Custom Interfaces

Target for Acceleration: Data Parallel Applications

Effectiveness of Data Movers: Small Data

© Copyright 2013 Xilinx

XILINX ➤ ALL PROGRAMMABLE.

Effectiveness of Data Movers: Big Data

© Copyright 2013 Xilinx

XILINX ➤ ALL PROGRAMMABLE.

Accelerating Forward Projection (Medical Imaging)

ARM @ 800MHz, Accelerators @ 100MHZ

C source code ported to FPGA using Vivado-HLS

© Copyright 2013 Xilinx

SSIT Makes Integration Possible

© Copyright 2013 Xilinx

Cost Comparison: Monolithic vs. Multi-Die

"Moore's Law is really about economics" – Gordon Moore

Chip Input/Output Bottleneck

15x Drop in I/O-to-logic Ratio by 2020

© Copyright 2013 Xilinx

Virtex-7 HT: Heterogeneous SerDes Today

- > 2.8Tb/s ~3X Monolithic
- > 16 x 28G Transceivers
- > 72 x 13G Transceivers
- > 650 GPIO

- > Yield optimized
- > Noise isolation
- 28G process optimized for performance
- FPGA process optimized for power

In the Future: Integrated Memory

> Higher Memory Bandwidth at Lower Power

- 1Tbps 2Tbps
- ~1Gb/s per interposer wire
- Simple extension of existing work

XII INX > ALL PROGRAMMABLE.

Note: This does not reflect any current or proposed product offering from Xilinx

© Copyright 2013 Xilinx

Analog Integration Further Enables Applications

Programming Heterogeneous Multi-Cores: An AMP Framework

Uses rproc/rpmsg

> Use Linux for Start/Stop

- Invoke app on AMP core like a process
 - Compile/link with different compiler depending on target core
 - Linux figures out where to put it

Many Areas to Explore

> Fabric as accelerator paradigms

- Data movement
- Fast design space exploration
- FPGA enables easy prototyping

> Programming models

- Need simple models
- Enabling efficient real time
- Low latency
- > Fast place and route
 - So FPGA looks more "software-programmable"
- > Partial Reconfiguration
 - So it looks like more like software
- System monitoring capability opens up
 - Avenues to explore energy efficiency

Many of today's applications are best addressed by a combination of Harvard architectures and massively parallel engines

FPGAs have the key system building blocks plus the interconnect to put them together in a flexible way

© Copyright 2013 Xilinx

EXILINX > ALL PROGRAMMABLE.

Backup

