All Programmable Devices: Not Just an FPGA Anymore

Vidya Rajagopalan
Corporate Vice President, Processing, Software, Systems and Applications
Xilinx

December 11, 2013
Then and Now

1985

- 100 Logic Cells
- 100 Flip Flops
- 74 IO
- Supply Voltage: 5V
- 2.5 um process

2012

- 2.15M Logic Cells (~21K x)
- 2.44M Flip Flops (~24K x)
- 1200 IO (16 x), 36 SERDES
- Supply Voltages: 8 supplies: 3.3V to 1V
- 28nm process (Scaling ~90x)

- 46Mb Block RAM, 21Mb LUT RAM
- 2160 DSP Blocks

© Copyright 2013 Xilinx
Over Time: Moore’s Law at Work

FPGA Trends over Time

- Capacity
- Speed
- Price
- Power

CPU Trends over Time

- Intel CPU Trends
 (sources: Intel, Wikipedia, K. Olukotun)

- Dual-Core Itanium 2
- Pentium 4
- Pentium
- 386

FPGA P&R Runtime

P&R runtime improved for equivalent design by 40x,
Device sizes increased by 6x
Wafer Prices Going Up

Fewer and fewer people can afford to build chips
More than Moore’s Law Behind the Scenes

The early years: Fine grain integration

More recently: Coarse grain integration

- **1985** XC2000: LUT
- **1986** XC4000: Carry Chain
- **1999** Virtex: Buffered Interconnect
- **2001** Virtex2: SERDES, PPC
- **2002/3** Virtex2Pro: DSP, 6LUT, 2LUT
- **2004** Virtex-4: AMS, 6LUT
- **2006** Virtex-5: ARM System, SSIT
- **2011** 7-Series, Zynq: ASIC STYLE CLOCKING
- **2014** UltraScale

© Copyright 2013 Xilinx
Evolving Towards Heterogeneous Multi-Core

Programmable Logic Devices
Enables Programmable “Logic”

All Programmable Devices
Enables Programmable “Systems Integration”

© Copyright 2013 Xilinx

XILINX ➔ ALL PROGRAMMABLE.
Zynq-7000 All Programmable SoC
What Makes it So Cool?

- Boots up like a processor
 - Runs software code

- CPU master controls fabric
 - Configuration/Reconfiguration

- Ease of use of a processor

- 2 P’s of FPGAs
 - Programmability
 - Parallelism

- Making possible
 - Near ASIC cost and performance
 - Build your own SoC
 - Software Acceleration Paradigms

Zynq® - Democratizing SoCs One Chip at a Time
Zynq-7000 All Programmable SoC Family Applications Served

- Existing and emerging applications
 - Image Processing
 - Signal Processing
 - Database Search (memcached)
 - etc.

- Common themes include
 - Data Parallel Applications
 - Signal Processing Applications
 - High Bandwidth Real Time Processing
 - Custom Interfaces
Target for Acceleration: Data Parallel Applications

Current Frame

Previous Frame

OpenCV Motion Detection Algorithm

Output Frame

Detected New Car

© Copyright 2013 Xilinx

XILINX ALL PROGRAMMABLE.
Un-optimized Application on Zynq

- Video Input Subsystem
- Memory Subsystem
- ARM A9 Processor
- Memory Subsystem
- Video Output Subsystem

Optimized Application on Zynq

- Video Input Subsystem
- Memory Subsystem
- Sobel Current Edge
- Sobel Prev Edge
- detect_new_edge
- cvSmooth
- highlight_blend
- ARM A9 Processor
- Memory Subsystem
- Video Output Subsystem

~180x speedup
External Input/Output and Compute

Frame Buffer is the application level abstraction for HDMI input/output

Framebuffer to HDMI IO IP subsystem

HDMI to Framebuffer IO IP subsystem
Effectiveness of Data Movers: Small Data

AXI MM, Simple DMA & AXI_FIFO at 100 MHz - Range 1

© Copyright 2013 Xilinx
Effectiveness of Data Movers: Big Data

AXI MM, Simple DMA & AXI_FIFO at 100 MHz - Range 2

- xvi_mm ACP
- xvi_mm HP0
- xvi_fifo
- simple dma ACP
- simple dma HP0

© Copyright 2013 Xilinx
Accelerating Forward Projection (Medical Imaging)

- Initial partitioning
- Move more computation to PL
- Reduce data motion overhead by direct connection
- Replicate accelerator for more performance

~0.9 sec/view ~58x Speedup 65 views/sec

ARM @ 800MHz, Accelerators @ 100MHZ

C source code ported to FPGA using Vivado-HLS
SSIT Makes Integration Possible

Microbumps
- Access to power / ground / IOs

Through-silicon Vias (TSV)
- Only bridge power / ground / IOs to C4 bumps

Passive Silicon Interposer (65nm Generation)
- 4 conventional metal layers connect micro bumps & TSVs

Side-by-Side Die Layout
- Minimal heat flux issues

New!

Microbumps
Silicon Interposer
Through-Silicon Vias
C4 Bumps
BGA Balls
Cost Comparison: Monolithic vs. Multi-Die

“Moore’s Law is really about economics” – Gordon Moore
Chip Input/Output Bottleneck

15x Drop in I/O-to-logic Ratio by 2020
Virtex-7 HT: Heterogeneous SerDes Today

- 2.8Tb/s ~3X Monolithic
- 16 x 28G Transceivers
- 72 x 13G Transceivers
- 650 GPIO

Yield optimized
Noise isolation
28G process optimized for performance
FPGA process optimized for power
In the Future: Integrated Memory

Higher Memory Bandwidth at Lower Power
- 1Tbps – 2Tbps
- ~1Gb/s per interposer wire
- Simple extension of existing work

Note: This does not reflect any current or proposed product offering from Xilinx
Analog Integration Further Enables Applications

- Simultaneous Sampling of I_a & I_b
 - Accommodate current sensor output unipolar / differential
 - Synchronize ADC sampling to PMW

Motor Control Example

- Custom Signal Processing
 - Clarke & Park transforms in FPGA fabric

© Copyright 2013 Xilinx
Programming Heterogeneous Multi-Cores: An AMP Framework

Uses rproc/rpmsg

- **MicroBlaze xilkernel**
- rpmsg ring buffers
- A9 Linux kernel
- A9 FreeRTOS

Use Linux for Start/Stop
- Invoke app on AMP core like a process
 - Compile/link with different compiler depending on target core
 - Linux figures out where to put it
Many Areas to Explore

- **Fabric as accelerator paradigms**
 - Data movement
 - Fast design space exploration
 - FPGA enables easy prototyping

- **Programming models**
 - Need simple models
 - Enabling efficient real time
 - Low latency

- **Fast place and route**
 - So FPGA looks more “software-programmable”

- **Partial Reconfiguration**
 - So it looks like more like software

- **System monitoring capability opens up**
 - Avenues to explore energy efficiency
Relentless trend towards integration

Fabless model unattractive for all except the deepest pockets

Many of today’s applications are best addressed by a combination of Harvard architectures and massively parallel engines

FPGAs have the key system building blocks plus the interconnect to put them together in a flexible way