(intel”

SMARQ: Software-Managed Alias
Register Queue for Dynamic
Optimizations

Cheng Wang, Youfeng Wu, Hongbo Rong, Hyunchul Park

Programming Systems Lab
Intel Labs

MICRO 2012 intel'



Dynamic Optimization with Hardware
Alias Detection

Application Code

Dynamic Optimization System
peculation on
memory alias




Dynamic Optimization with Hardware
Alias Detection

Application Code

Dynamic Optimization Systemn
Trigger
Re-Optimization

Programming Systems Lab i




Background 1: Hardware Alias Detection

unlikely
alias

[MO: st [rO] = ...
M;: ... =1d [r1]

Programming Systems Lab

intel‘



Background 1: Hardware Alias Detection

unlikely
alias

[Ml: .. =1d [r1] , set alias register ARO

My: st [rO] = ... , check alias register ARO

Programming Systems Lab i




Background 1: Hardware Alias Detection

un”ke,y[ M;: ... =1d [r1] , set alias register ARO
alias

SW | My: st [rO] = ... , check alias register ARO
HW ARO

[r1, r143]

Programming Systems Lab i




Background 1: Hardware Alias Detection

un”ke,y[ M;: .. =1Id [r1] , set alias register ARO
;
SW T My: st [rO] = ... , check alias register ARO
HW ARQ
[r1, r1+3]
‘check overlap

[rO, rO+3]

Programming Systems Lab .




Multiple Alias Check Issue

Mo: st [rO+4] = ...

Mi: ... =1d [r1]
Mz: st [I‘O] =
M5: ... = Id [r2]

Programming Systems Lab

intel‘



Multiple Alias Check Issue

Mi: ... =1d [r1] , set AR1
M,: st [rO] = ... , check ARO
— My: st [rO+4] = ... , check ARO, AR1

unlikely
alias

"||I:M3: .. = Id [r2] , set ARO

Programming Systems Lab i




Multiple Alias Check Issue

Mi: ... =1d [r1] , set AR1
M,: st [rO] = ... , check ARO
— Mg st [rO+4] = ... , check ARO, AR1

* A memory operation (i.e. My) may need to check multiple alias registers (i.e. ARO, AR1)

unlikely
alias

"||I:M3: .. = Id [r2] , set ARO

Programming Systems Lab i




Multiple Alias Check Issue

™ M5: ... =1d [r2] , set ARO
unlikely |[[[ My: ... = Id [r1] , set AR1
alias M,: st [rO] = ... , check ARO
— My: st [rO+4] = ... , check ARO, AR1

* A memory operation (i.e. My) may need to check multiple alias registers (i.e. ARO, AR1)
* Transmeta Efficeon uses a bitmask in the instruction to specify the individual alias registers to
be checked

- cannot scale up to a large number of alias registers

Programming Systems Lab .

|ntel‘




Multiple Alias Check Issue

™ M5: ... =1d [r2] , set ARO
unlikely [[[ My: ... = Id [r1] , set AR1
alias M,: st [rO] = , check ARO
— Mg: st [r0+4] = ... , check ARO, AR1

* A memory operation (i.e. My) may need to check multiple alias registers (i.e. ARO, AR1)

* Transmeta Efficeon uses a bitmask in the instruction to specify the individual alias registers to
be checked

- cannot scale up to a large number of alias registers

« Itanium Advanced Load Address Table (ALAT) checks all alias registers set by previous

advanced loads
- may lead to false positive (i.e. M, checks My)

- can not check alias between stores

Programming Systems Lab .




Mo
M,
M,
M;

Background 2: Order-Based Alias

: st [r0+4] = ...
c ..o =1d [r1]
st [r0] = ...
.= 1d [r2]

Detection

Programming Systems Lab

intel‘




M3
M,
M,
Mo

Background 2: Order-Based Alias

.= 1d [r2]
c ..o =1d [r1]
: st [rO] = ...

st [r0+4] = ...

Detection

, order 3
, order 1
, order 2
, order O

Programming Systems Lab i




Background 2: Order-Based Alias

Detection
M5: ... =1d [r2] , order 3 // set AR3
M;: ... =1d [r1] , order 1 // set AR1
M,: st [rO] = ... , order 2 // set AR2, check AR3
Mg: st [rO+4] = ... , order 0O
ARO AR1 AR2 AR3
queue [rl, r1+3] | [rO, rO+3] | [r2, r2+3]

check overlap

Programming Systems Lab . tel

(intel




Background 2: Order-Based Alias

Detection
M5: ... =1d [r2] , order 3 // set AR3
M;: ... =1d [r1] , order 1 // set AR1
M,: st [rO] = ... , order 2 // set AR2, check AR3
Mg: st [rO+4] = ... , order 0O // set ARO, check AR1, AR2, AR3
ARO AR1 AR2 AR3

queue | [rO+4, rO+7] | [r1, r1+3] | [rO, rO+3] | [r2, r2+3]

check overlap

Programming Systems Lab .




Background 2: Order-Based Alias

Detection
Ms: ... = Id [r2] , order 3 // set AR3
M;: ... =1d [r1] , order 1 // set AR1
M,: st [rO] = ... , order 2 // set AR2, check AR3
Mg: st [rO+4] = ... order O // set ARO, check AR1, AR2, AR3
ARO AR1 AR2 AR3

queue | [rO+4, rO+7] | [rl, r1+3] | [rO, rO+3] | [r2, r2+3]

* Adopted in out-of-order CPU (ld/st queue) for HW speculation

. Detgcc_:t all the aliases between reordered memory operations without any false
positive
- HW automatically identifies loads to prevent alias check between them (E.g. M, does not
check AR3)

Programming Systems Lab

intel'



Order-Based Alias Detection Issues

M5: ... = 1d [r2] , order 3 // set AR3

M;: ... =1Id [r1] , order 1 // set AR1

M,: st [rO] = ... , order 2 // set AR2, check AR3

My: st [rO+4] = ... , order O // set ARO, check AR1, AR2, AR3
* Do not leverage compiler analysis for efficient alias register

usage

- 4 alias registers are used
- M, does not need to check M,

Programming Systems Lab i




Order-Based Alias Detection Issues

M5: ... = 1d [r2] , order 3 // set AR3

M;: ... =1Id [r1] , order 1 // set AR1

M,: st [rO] = ... , order 2 // set AR2, check AR3

My: st [rO+4] = ... , order O // set ARO, check AR1, AR2, AR3
* Do not leverage compiler analysis for efficient alias register

usage

- 4 alias registers are used
- M, does not need to check M,

* Only consider memory reordering, but not general
optimizations such as load/store elimination

- May need alias check between non-reordered memory operations

Programming Systems Lab

intel'



Check Between Non-Reordered Memory

:r3 =1d [rO]
c e =1d [r1]

st [r2] = ..
:r4 = 1d [rO]

: st [r0] =13
o= 1d [rl1]
s st [r2] = ...

:st[r0] =r4

Operations

load elimination Mo: r3 = Id [r0]
— Mp: ... =1d [r1]
M,: st [r2] = ...

Ms: r4 =r3

o My:
store elimination M;: ... = Id [r1]
— M,: st [r2] = ...

M;: st [rO] = r4

Programming Systems Lab .




Motivation

SW-Managed Alias Register File HW-Managed Alias Register Queue

* SW Speculation on In-Order CPU | | * HW Speculation on Out-of-Order CPU
* Itanium - False Positive Issue * Efficiency Issue

° Transmeta - Scala})ility Issue . Generalizati(\m Issue

)

SMARQ: SW-Managed Alias Register Queue
* Novel architecture features and compiler algorithms
* Solve all the issues in previous works

Programming Systems Lab




Mo
My
M,
M3

SMARQ Example

» st [r0+4] = ...
r ..o =1d [r1]
»st[r0] = ...
s .o=1d [r2]

Programming Systems Lab

intel‘



SMARQ Example

M;: ... =1d [r2]
Mi: ... =1d [r1]
M,: st [rO] = ...

Mo: st [rO+4] = ...

« Compiler analysis to derive necessary alias checking for the optimization
- Check-constraint A = B: A needs to check B for alias

Programming Systems Lab 'ntel‘




SMARQ Example

M;: ... =1d [r2] , P
Mi: ... =1d [r1] , P
M,: st [rO] = ... » L
Mp: st [rO+4] = ... , C

« Compiler analysis to derive necessary alias checking for the optimization
— Check-constraint A = B: A needs to check B for alias

* Leverage architecture features for efficient management of the alias register queue
- P bit for setting alias register and a C bit for checking alias registers (may have both)

Programming Systems Lab 'ntel'



SMARQ Example

M;: ... =1d [r2] , P ,order1l
Mi: ... =1d [r1] , P, order 0O
M,: st [rO] = ... , C ,order1
Mo: st [rO+4] = ... ,C , order 0

« Compiler analysis to derive necessary alias checking for the optimization
- Check-constraint A = B: A needs to check B for alias

* Leverage architecture features for efficient management of the alias register queue
- P bit for setting alias register and a C bit for checking alias registers (may have both)

» Alias register order allocation respecting check-constraints
- A—>B = order(A) <= order(B)
- The alias register order for different instructions with P bit must be different

Programming Systems Lab




SMARQ Example

M;: ... =1d [r2] , P ,order1l // set AR1
Mi: ... =1d [r1] , P, order 0O // set ARO
M,: st [rO] = ... , C ,order1 // check AR1
SW My: st [rO+4] = .. , C , order 0
ARO AR1
HW queue [r1, ri+3] [r2, r2+3] ;
[r0, rO+3]

« Compiler analysis to derive necessary alias checking for the optimization
- Check-constraint A = B: A needs to check B for alias

* Leverage architecture features for efficient management of the alias register queue
- P bit for setting alias register and a C bit for checking alias registers (may have both)

» Alias register order allocation respecting check-constraints
- A—>B = order(A) <= order(B)
- The alias register order for different instructions with P bit must be different

Programming Systems Lab




SMARQ Example

M;: ... =1d [r2] , P ,order1l // set AR1
Mi: ... =1d [r1] , P, order 0O // set ARO
M,: st [rO] = ... , C ,order1 // check AR1
SW M,: st [r0+4] = .. ,C , order 0 // check ARO, AR1
ARO AR1
HW queue [r1, ri+3] [r2, r2+3] ;

[rO+4, r0+7]

« Compiler analysis to derive necessary alias checking for the optimization
- Check-constraint A = B: A needs to check B for alias

* Leverage architecture features for efficient management of the alias register queue
- P bit for setting alias register and a C bit for checking alias registers (may have both)

» Alias register order allocation respecting check-constraints
- A—>B = order(A) <= order(B)
- The alias register order for different instructions with P bit must be different

Programming Systems Lab




Prevent False Positive

Ms: ... = Id [r2] , P ,order1l // set AR1
Mi:...=1Id [rl] , P ,order0 // set ARO
M,: st [rO] = ... , C ,order0 // check ARO, AR1
My: st [rO+4] = ... , C ,order0 // check ARO, AR1

* Alias register order respecting check-constraint may cause
false positive in alias checking

- No restriction on the alias register order between M, and M, and
Incorrect order between them will cause M, to check M,

Programming Systems Lab

intel'




Prevent False Positive

Ms: ... = Id [r2] , P ,order1 // set AR1
Mi:...=1Id [rl] , P ,order0 // set ARO

M,: st [r0] = ... € ,C ,orderl // check AR1

My: st [rO+4] = ... , C ,order0 // check ARO, AR1

* Alias register order respecting check-constraint may cause
false positive in alias checking

- No restriction on the alias register order between M, and M, and
Incorrect order between them will cause M, to check M,

e Anti-constraint A -->B: A should not be checked by B
- A-->B = order(A) < order(B)

Programming Systems Lab

(Intel.




Advanced SMARQ Features

« Alias register rotation*
- HW organize the alias registers as a circular queue rotated through a base alias register pointer

- SW rotate the alias register queue to release dead alias register, just like the release of Id/st queue entry in
out-of-order CPU

» Handle order cycles*

- The alias register order respecting all the check-constraints and anti-constraints may contain cycles
- No alias register order can detect all the aliases without any false positive

- New architecture alias-register-move feature to break all the cycles

* Prevent alias register overflow*
- It is hard to support alias register spill

- Allocate alias register during list scheduling so that if alias register may overflow, schedule instruction to
respect all aliases without using new alias registers

* See details in the paper

Programming Systems Lab




Experiment Setup

* dynamic optimization framework translates and
optimizes x86 binary codes into code running on an
internal VLIW CPU modeled by a cycle-accurate

Architecture Features Parameter
8-wide VLIW 2 INT units, 2 FP units, 2 MEM unit, 1 BRANCH unit, 1 ALIAS unit
L1 I-Cache 4-way 256KB
L1 D-Cache 4-way 64KB, HW prefetch
L2 Cache 8-way 2MB, 8 cycle latency,
HW perfetch
L3 Cache 8-way 8MB, 25 cycle latency
Memory 1GB, 104 cycle latency
Alias Register Queue 64 entries

Programming Systems Lab i




Average Region Size

S 20 S

>10

g O I I I I I I T I I I 1

(7] QN S W@ oL ad & 2 2 .& 2
S QR PO PEN®

R S R

Programming Systems Lab . :
g 9 =y (intel




Speedup with Different Alias Detection

1.8
84,8
T 1.4 -
g 1.2 M
(7)) 1 - ' 5 N
Q N 2) Z o e o > &L Q
R IS S CHNS SN -\
SR NGRS A R §<§‘ S
IS

ESMARQ ®SMARQ16 mItanium-Like Approach

* Baseline: no HW alias detection
« SMARQ: 39% speedup on average

« SMARQ16: restrict alias register queue to 16 entries
- 29% speedup

* Itanium-like approach: non ordered alias detection (with false positives)
- 26% speedup

Programming Systems Lab 'ntel'



Speedup with Different Alias Detection

ESMARQ ®SMARQ16 mItanium-Like Approach

* Baseline: no HW alias detection

« SMARQ: 39% speedup on average

« SMARQ16: restrict alias register queue to 16 entries
- 29% speedup

* Itanium-like approach: non ordered alias detection (with false positives)
- 26% speedup

Programming Systems Lab 'ntel'



Alias Register Working Set

Average Working Set Size

o
oulrr WU

Q W (9\ < C O €> &) ((\ \ﬁ\ {b.

SR T L AN NG S 2

S & TFEE ST S FS
®mbaseline (mem #) #®SMARQ mlower-bound

* Baseline: allocate each memory operation a unique alias register in their program order
« SMARQ: reduce the average alias register working set by 74%.

* Lower bound: maximum number of overlapped alias register live-ranges
- SMARQ achieves alias register working set size close to the lower bound.

Programming Systems Lab .

|ntel’



Conclusions

* We identify in details the issues in all the previous
works on alias registers

« We proposed SMARQ), a software managed alias
register queue to solve all the issues in previous
works

- improve the overall performance by 39% as compared to
the optimization without alias register

- reduce the alias register working set by 74%

Programming Systems Lab .

|ntel'




