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Background 1: Hardware Alias Detection
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Background 1: Hardware Alias Detection

un”ke,y[ M;: ... =1d [r1] , set alias register ARO
alias
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Background 1: Hardware Alias Detection

un”ke,y[ M;: .. =1Id [r1] , set alias register ARO
;
SW T My: st [rO] = ... , check alias register ARO
HW ARQ
[r1, r1+3]
‘check overlap

[rO, rO+3]
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Multiple Alias Check Issue

Mo: st [rO+4] = ...

Mi: ... =1d [r1]
Mz: st [I‘O] =
M5: ... = Id [r2]
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Multiple Alias Check Issue

Mi: ... =1d [r1] , set AR1
M,: st [rO] = ... , check ARO
— My: st [rO+4] = ... , check ARO, AR1

unlikely
alias

"||I:M3: .. = Id [r2] , set ARO
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Multiple Alias Check Issue

Mi: ... =1d [r1] , set AR1
M,: st [rO] = ... , check ARO
— Mg st [rO+4] = ... , check ARO, AR1

* A memory operation (i.e. My) may need to check multiple alias registers (i.e. ARO, AR1)

unlikely
alias

"||I:M3: .. = Id [r2] , set ARO
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Multiple Alias Check Issue

™ M5: ... =1d [r2] , set ARO
unlikely |[[[ My: ... = Id [r1] , set AR1
alias M,: st [rO] = ... , check ARO
— My: st [rO+4] = ... , check ARO, AR1

* A memory operation (i.e. My) may need to check multiple alias registers (i.e. ARO, AR1)
* Transmeta Efficeon uses a bitmask in the instruction to specify the individual alias registers to
be checked

- cannot scale up to a large number of alias registers
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Multiple Alias Check Issue

™ M5: ... =1d [r2] , set ARO
unlikely [[[ My: ... = Id [r1] , set AR1
alias M,: st [rO] = , check ARO
— Mg: st [r0+4] = ... , check ARO, AR1

* A memory operation (i.e. My) may need to check multiple alias registers (i.e. ARO, AR1)

* Transmeta Efficeon uses a bitmask in the instruction to specify the individual alias registers to
be checked

- cannot scale up to a large number of alias registers

« Itanium Advanced Load Address Table (ALAT) checks all alias registers set by previous

advanced loads
- may lead to false positive (i.e. M, checks My)

- can not check alias between stores
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Background 2: Order-Based Alias

: st [r0+4] = ...
c ..o =1d [r1]
st [r0] = ...
.= 1d [r2]

Detection
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Background 2: Order-Based Alias

.= 1d [r2]
c ..o =1d [r1]
: st [rO] = ...

st [r0+4] = ...

Detection

, order 3
, order 1
, order 2
, order O
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Background 2: Order-Based Alias

Detection
M5: ... =1d [r2] , order 3 // set AR3
M;: ... =1d [r1] , order 1 // set AR1
M,: st [rO] = ... , order 2 // set AR2, check AR3
Mg: st [rO+4] = ... , order 0O
ARO AR1 AR2 AR3
queue [rl, r1+3] | [rO, rO+3] | [r2, r2+3]

check overlap
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Background 2: Order-Based Alias

Detection
M5: ... =1d [r2] , order 3 // set AR3
M;: ... =1d [r1] , order 1 // set AR1
M,: st [rO] = ... , order 2 // set AR2, check AR3
Mg: st [rO+4] = ... , order 0O // set ARO, check AR1, AR2, AR3
ARO AR1 AR2 AR3

queue | [rO+4, rO+7] | [r1, r1+3] | [rO, rO+3] | [r2, r2+3]

check overlap
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Background 2: Order-Based Alias

Detection
Ms: ... = Id [r2] , order 3 // set AR3
M;: ... =1d [r1] , order 1 // set AR1
M,: st [rO] = ... , order 2 // set AR2, check AR3
Mg: st [rO+4] = ... order O // set ARO, check AR1, AR2, AR3
ARO AR1 AR2 AR3

queue | [rO+4, rO+7] | [rl, r1+3] | [rO, rO+3] | [r2, r2+3]

* Adopted in out-of-order CPU (ld/st queue) for HW speculation

. Detgcc_:t all the aliases between reordered memory operations without any false
positive
- HW automatically identifies loads to prevent alias check between them (E.g. M, does not
check AR3)
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Order-Based Alias Detection Issues

M5: ... = 1d [r2] , order 3 // set AR3

M;: ... =1Id [r1] , order 1 // set AR1

M,: st [rO] = ... , order 2 // set AR2, check AR3

My: st [rO+4] = ... , order O // set ARO, check AR1, AR2, AR3
* Do not leverage compiler analysis for efficient alias register

usage

- 4 alias registers are used
- M, does not need to check M,
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Order-Based Alias Detection Issues

M5: ... = 1d [r2] , order 3 // set AR3

M;: ... =1Id [r1] , order 1 // set AR1

M,: st [rO] = ... , order 2 // set AR2, check AR3

My: st [rO+4] = ... , order O // set ARO, check AR1, AR2, AR3
* Do not leverage compiler analysis for efficient alias register

usage

- 4 alias registers are used
- M, does not need to check M,

* Only consider memory reordering, but not general
optimizations such as load/store elimination

- May need alias check between non-reordered memory operations
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Check Between Non-Reordered Memory

:r3 =1d [rO]
c e =1d [r1]

st [r2] = ..
:r4 = 1d [rO]

: st [r0] =13
o= 1d [rl1]
s st [r2] = ...

:st[r0] =r4

Operations

load elimination Mo: r3 = Id [r0]
— Mp: ... =1d [r1]
M,: st [r2] = ...

Ms: r4 =r3

o My:
store elimination M;: ... = Id [r1]
— M,: st [r2] = ...

M;: st [rO] = r4
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Motivation

SW-Managed Alias Register File HW-Managed Alias Register Queue

* SW Speculation on In-Order CPU | | * HW Speculation on Out-of-Order CPU
* Itanium - False Positive Issue * Efficiency Issue

° Transmeta - Scala})ility Issue . Generalizati(\m Issue

)

SMARQ: SW-Managed Alias Register Queue
* Novel architecture features and compiler algorithms
* Solve all the issues in previous works
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SMARQ Example

» st [r0+4] = ...
r ..o =1d [r1]
»st[r0] = ...
s .o=1d [r2]
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SMARQ Example

M;: ... =1d [r2]
Mi: ... =1d [r1]
M,: st [rO] = ...

Mo: st [rO+4] = ...

« Compiler analysis to derive necessary alias checking for the optimization
- Check-constraint A = B: A needs to check B for alias
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SMARQ Example

M;: ... =1d [r2] , P
Mi: ... =1d [r1] , P
M,: st [rO] = ... » L
Mp: st [rO+4] = ... , C

« Compiler analysis to derive necessary alias checking for the optimization
— Check-constraint A = B: A needs to check B for alias

* Leverage architecture features for efficient management of the alias register queue
- P bit for setting alias register and a C bit for checking alias registers (may have both)
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SMARQ Example

M;: ... =1d [r2] , P ,order1l
Mi: ... =1d [r1] , P, order 0O
M,: st [rO] = ... , C ,order1
Mo: st [rO+4] = ... ,C , order 0

« Compiler analysis to derive necessary alias checking for the optimization
- Check-constraint A = B: A needs to check B for alias

* Leverage architecture features for efficient management of the alias register queue
- P bit for setting alias register and a C bit for checking alias registers (may have both)

» Alias register order allocation respecting check-constraints
- A—>B = order(A) <= order(B)
- The alias register order for different instructions with P bit must be different
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SMARQ Example

M;: ... =1d [r2] , P ,order1l // set AR1
Mi: ... =1d [r1] , P, order 0O // set ARO
M,: st [rO] = ... , C ,order1 // check AR1
SW My: st [rO+4] = .. , C , order 0
ARO AR1
HW queue [r1, ri+3] [r2, r2+3] ;
[r0, rO+3]

« Compiler analysis to derive necessary alias checking for the optimization
- Check-constraint A = B: A needs to check B for alias

* Leverage architecture features for efficient management of the alias register queue
- P bit for setting alias register and a C bit for checking alias registers (may have both)

» Alias register order allocation respecting check-constraints
- A—>B = order(A) <= order(B)
- The alias register order for different instructions with P bit must be different

Programming Systems Lab




SMARQ Example

M;: ... =1d [r2] , P ,order1l // set AR1
Mi: ... =1d [r1] , P, order 0O // set ARO
M,: st [rO] = ... , C ,order1 // check AR1
SW M,: st [r0+4] = .. ,C , order 0 // check ARO, AR1
ARO AR1
HW queue [r1, ri+3] [r2, r2+3] ;

[rO+4, r0+7]

« Compiler analysis to derive necessary alias checking for the optimization
- Check-constraint A = B: A needs to check B for alias

* Leverage architecture features for efficient management of the alias register queue
- P bit for setting alias register and a C bit for checking alias registers (may have both)

» Alias register order allocation respecting check-constraints
- A—>B = order(A) <= order(B)
- The alias register order for different instructions with P bit must be different
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Prevent False Positive

Ms: ... = Id [r2] , P ,order1l // set AR1
Mi:...=1Id [rl] , P ,order0 // set ARO
M,: st [rO] = ... , C ,order0 // check ARO, AR1
My: st [rO+4] = ... , C ,order0 // check ARO, AR1

* Alias register order respecting check-constraint may cause
false positive in alias checking

- No restriction on the alias register order between M, and M, and
Incorrect order between them will cause M, to check M,
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Prevent False Positive

Ms: ... = Id [r2] , P ,order1 // set AR1
Mi:...=1Id [rl] , P ,order0 // set ARO

M,: st [r0] = ... € ,C ,orderl // check AR1

My: st [rO+4] = ... , C ,order0 // check ARO, AR1

* Alias register order respecting check-constraint may cause
false positive in alias checking

- No restriction on the alias register order between M, and M, and
Incorrect order between them will cause M, to check M,

e Anti-constraint A -->B: A should not be checked by B
- A-->B = order(A) < order(B)
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Advanced SMARQ Features

« Alias register rotation*
- HW organize the alias registers as a circular queue rotated through a base alias register pointer

- SW rotate the alias register queue to release dead alias register, just like the release of Id/st queue entry in
out-of-order CPU

» Handle order cycles*

- The alias register order respecting all the check-constraints and anti-constraints may contain cycles
- No alias register order can detect all the aliases without any false positive

- New architecture alias-register-move feature to break all the cycles

* Prevent alias register overflow*
- It is hard to support alias register spill

- Allocate alias register during list scheduling so that if alias register may overflow, schedule instruction to
respect all aliases without using new alias registers

* See details in the paper
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Experiment Setup

* dynamic optimization framework translates and
optimizes x86 binary codes into code running on an
internal VLIW CPU modeled by a cycle-accurate

Architecture Features Parameter
8-wide VLIW 2 INT units, 2 FP units, 2 MEM unit, 1 BRANCH unit, 1 ALIAS unit
L1 I-Cache 4-way 256KB
L1 D-Cache 4-way 64KB, HW prefetch
L2 Cache 8-way 2MB, 8 cycle latency,
HW perfetch
L3 Cache 8-way 8MB, 25 cycle latency
Memory 1GB, 104 cycle latency
Alias Register Queue 64 entries

Programming Systems Lab i




Average Region Size

S 20 S

>10

g O I I I I I I T I I I 1

(7] QN S W@ oL ad & 2 2 .& 2
S QR PO PEN®

R S R

Programming Systems Lab . :
g 9 =y (intel




Speedup with Different Alias Detection
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ESMARQ ®SMARQ16 mItanium-Like Approach

* Baseline: no HW alias detection
« SMARQ: 39% speedup on average

« SMARQ16: restrict alias register queue to 16 entries
- 29% speedup

* Itanium-like approach: non ordered alias detection (with false positives)
- 26% speedup

Programming Systems Lab 'ntel'



Speedup with Different Alias Detection

ESMARQ ®SMARQ16 mItanium-Like Approach

* Baseline: no HW alias detection

« SMARQ: 39% speedup on average

« SMARQ16: restrict alias register queue to 16 entries
- 29% speedup

* Itanium-like approach: non ordered alias detection (with false positives)
- 26% speedup

Programming Systems Lab 'ntel'



Alias Register Working Set

Average Working Set Size
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* Baseline: allocate each memory operation a unique alias register in their program order
« SMARQ: reduce the average alias register working set by 74%.

* Lower bound: maximum number of overlapped alias register live-ranges
- SMARQ achieves alias register working set size close to the lower bound.
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Conclusions

* We identify in details the issues in all the previous
works on alias registers

« We proposed SMARQ), a software managed alias
register queue to solve all the issues in previous
works

- improve the overall performance by 39% as compared to
the optimization without alias register

- reduce the alias register working set by 74%
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