RIFLE: An Architectural Framework for
User-Centric Information-Flow Security

Neil Vachharajani - Matthew J. Bridges
Jonathan Chang - Ram Rangan
Guilherme Ottoni - Jason A. Blome - George A. Reis
Manish Vachharajani - David I. August

Liberty Research Group
Princeton University

Information-Flow Security in the Real World

P IRS provides

E tax forms IRS.gov

(&)

(b}

)]

3

e Alice Tax Prep Financial

% Software _ Info

‘ 4 Barrier

S

= -

itk Alice enters /T .

T her financial axPrep, Inc.

LL .

o information provides software TaxPrep.com
patches

The Liberty Research Group http://www.liberty-research.org

Information-Flow Security in the Real World

Financial

P lnf(_) I IRS provides

E Barrier | tax forms IRS.gov

O

e I

8 |

- Alice Tax Prep

= Software

g I

S [

= |

itk Alice enters | - oren

T her financial axPrep, Inc.

LL .

o information . prOV|dets Eoftware TaxPrep.com
patches

The Liberty Research Group http://www.liberty-research.org

Information-Flow Security in the Real World

All programs must be assumed unsafe
 Malicious programs intentionally leak information
e Buggy programs that unintentionally leak information

User-Centric Information-Flow Security

1. Users want to establish their owr security policy
e CIA's security needs differ from Joe Average's

2. Users want data-dependent security policies
 Web browser with web search form data
e Web browser with banking login form data

RIFLE: Information Flow Security

3. Users should not have to sacrifice security for functionality
e All programs should be secure or securable

(i e Only security holes that will be realized are significant

-

The Liberty Research Group http://www.liberty-research.org

Definition of Security: Non-Interference

Integrity
e Untrusted inputs should not affect trusted outputs
 Example: prevent input from being executed [suh 04, Crandall 04]

Confidentiality [penning 76, Myers 97, Myers 99, Tse 04]
e High security inputs should not affect low security outputs
e Example: tax preparation software

Key mechanism: tracking flow of information through code
e Integrity/confidentiality are dual
e Policies and enforcement rely on information flow

RIFLE: Information Flow Security

The Liberty Research Group http://www.liberty-research.org

Information-Flow Security: Tainting Data

e Used In Perl’s “taint” mode and other works
[Denning 76, Suh 04, Crandall 04]

add r4 = rl1,r2 1. Program inputs are tainted or
add r5 = r4,r3 labeled with a security class

div r5, 3 2. Labels propagate through

computation

3. Certain operations enforce a
security policy by verifying
operand labels for security

RIFLE: Information Flow Security

The Liberty Research Group http://www.liberty-research.org

Problems with the Taint Solution

sc .write,r2

mov r2=0
o]
E &
§ bnez rl1,L1
=
S
LL
c
(@)
= L1:mov r2=1
£
(@]
=
-
—
o

Value

rl
r2

Control Flow Can
Leak Information!

http://www.liberty-research.org

The Liberty Research Group

User-Centric Information-Flow Security

Essential for User-Centric IFS

e —~ ™
x Deal breaker for
User-Centric IFS x_ RN
x Fundamentally @rg&\ & 2 @ oV
Impossible o ({/‘\O e Aq’;-\ ,(}0(’
N\ S S &
Q\}_@ 0\\0 OQ\ & \\o
Taint [Suh 2004] % Dynamic| No No | Moderate

Static Systems

[Denning 76, Myers 97, Rate Limited SMC
Myers 99]

Static with Runtime | p e | imited | Hybrid D€ | ves | Little
Principles [Tse 2004] Lz -~ <
{ Dynamic/

N
Ideal User-Centric
| x | Hybrid No x None

RIFLE Rate Limited1|’ Dynamic| No Yes | Moderate
~ 7’

Yes None

RIFLE: Information Flow Security

P

AN

The Liberty Research Group http://www.liberty-research.org

Naive “Solution™: Taint the Program Counter

A
mov r2=0,PC e Ops have implicit PC operand
5 ! - Label PC like other operands
bnez PC=r1,L1 e PC should be declassified after
branch merge
C Value
L1:mov r2=1,PC rl
r2
’ _ PC| b~ D
PC=declassifty PC

sc .write,r2,PC

Code can leak information
whether it Is executed
or not!

The Liberty Research Group http://www.liberty-research.org

RIFLE: The Big Picture

|
Compiled Code
Base ISA

Runtime

(policy enforcer)

— |
2 |
= !
(7))
= |

Compiler j———pm———p = =¥ Environment |
> |
= |
-

o |

Programmer’s |
System_:
Unannotated Compiled Code
Source Code Secure ISA

RIFLE: Information Flow Security

Programmer

The Liberty Research Group http://www.liberty-research.org

Naive Binary Translation

mov r2=0,PC

v

bnez PC=r1,L1

L1:mov 52:1,PC

/7 Flow
7| Dependence

PC:deCIassify/ PC
sc .write,r2,PC

RIFLE: Information Flow Security

The Liberty Research Group http://www.liberty-research.org

Naive Binary Translation

1. Force every 1T to have an else

mov r2=0,PC

v

bnez PC=r1,L1

— .

L1:mov 52:1,PC

\A/HOW

7| Dependence

PC:deCIassify/ PC
sc .write,r2,PC

RIFLE: Information Flow Security

The Liberty Research Group http://www.liberty-research.org

Naive Binary Translation

1. Force every 1T to have an else
2. On each side of the branch, modify same variables

mov r2=0,PC

v

bnez PC=r1,L1

— .

mov rgfrZ,PC L1:-mov 52:1,PC

Flow \/Flow
Dependence 7

_ N L Dependence
PC—deCI_ass 1 f¥/ PC
sc .write,r2,PC

RIFLE: Information Flow Security

The Liberty Research Group http://www.liberty-research.org

Naive Binary Translation

e But, what about memory?

mov r2=&Xx,PC

{

bnez PC=r1,L1

—

st M[r1]=M[r1],PC L1:st M[t}]:l,PC

/
No Memory \/Possible

Dependence — _ 7~] Memory
& since rl == PC—dECIaSS”:y PC Dependence
-

RIFLE: Information Flow Security

sc .write,M[r2],PC

The Liberty Research Group http://www.liberty-research.org

RIFLE Binary Translation

Key Insight: Handle implicit flows at data use, not data definition.

movVv r2=&X

{

mov s10=sl
bnez r1,L1

i, Control
S \Dependence

4

L1:<s10> st‘y[rl]:l
7

/ .
/ Possible
’ Memory

b
<sl1l0> sc .write,M[r2] | bependence

RIFLE: Information Flow Security

The Liberty Research Group http://www.liberty-research.org

Results: Security

Word Count (wc)
e Function calls and returns
e Global pointer, stack pointer

wc . NM

B wc.MAP
load6.txt
src4+2or6.txt
Inputs Combined
Command Line

B Program Binary

PGP — identified unexpected information flows!

e Key ring — each key labeled with a unique label

e Plain text — colored with a unique label

e Cipher text —

(i e Expected: labeled with key’'s label and plain text label
=

RIFLE: Information Flow Security

e Actual: labeled with label of all keys up to used key and plain text label

The Liberty Research Group http://www.liberty-research.org

Hardware Implementation & Optimizations

« All instructions create explicit flows
e Use shadow registers/memory to store security labels
e Augment processor data path to track explicit flows
e Transformation inserts redundant security register defines

e Many instructions added
e Many security registers needed

add r1=0,1 add r1=0,1

mov s50 = sl0 s50 = mov s10

mov 369 = s50 (r10) jump L2
(r10) jump L2 L1: <s50>(rl) jump L3

L1: <s50>(rl) jump L3 N
L2: <s50> add r1=0,0

RIFLE: Information Flow Security

LZI f860> add r1=0,0 jump L1
Jump L1
& Before Opti After Opti
—3

The Liberty Research Group http://www.liberty-research.org

Results: Performance

Validated Itanium 2 model built in the Liberty Simulation Environment

2.5
B Double Cache

% 20 _ O Original Cache
£

<

T 1.5 -

©

(b}

N 1.0

©

£

g 05 - =

The Liberty Research Group http://www.liberty-research.org

Conclusions & Future Work

e User-centric information flow security empowers users
e User (not programmer) tailored security policy
e Data-based (not program-based) security
e Any program (no need for special languages) can be secured

e User-centric information flow security is possible

e RIFLE provides user-centric information-flow security by:
e Tracking flow and enforcing policies dynamically
e Using static “hints” via binary translation to establish security

e Future work
e Improved performance — more optimization, hardware acceleration
 JVM implementation — for broadened applicability

(i e Declassification — allowing user-controlled data “leaks”

-

RIFLE: Information Flow Security

The Liberty Research Group http://www.liberty-research.org

