The Fuzzy Correlation between Code and Performance Predictability

Murali Annavaram, Ryan Rakvic, Marzia Polito, Jean-Yves Bouguet, Richard Hankins, Bob Davies Intel Corporation

Acknowledgements to John Shen, Carole Dulong, Brad Calder

MICRO 2004

Why Correlate Code and Performance?

- Predict CPI by observing *just* EIPs (or PCs)
 - Assume, similar EIP sequence -> similar CPI
 - Shown to work well for some CPU2K benchmarks
 - For improving simulation speed and dynamic optimizations
- Do server workloads exhibit this correlation?
 - Large code base and non-loopy code path
 - Processes communicate through inter process communication
 - Use of OS services
- Regression Trees
 - Quantify CPI prediction accuracy using EIPs
 - Find upper bound for correlation

Workloads & Experimental Infrastructure

- Three representative server workloads
 - ODB-C
 - OLTP benchmark on Oracle 10g RDBMS
 - ODB-H
 - DSS benchmark on Oracle 10g RDBMS
 - SPECjAppServer (SjAS)
 - 3-Tier Application
 - Focus on middleware application server running BEA Weblogic
- Workloads tuned for maximum CPU utilization
- Hardware Configuration
 - Itanium-2 processor based system
 - Red Hat 2.1 + kernel 2.4.9-e.10smp
 - 16 GB of DDR memory
 - 34 Ultra320 SCSI 73 GB drives (used in ODB-C and ODB-H)
 - 200 MHz FS Bus

Tool Chain: Step 1: Data Collection

- VTUNE: Non-intrusive performance monitoring of physical systems
- Samples hardware counters
- No code instrumentation/recompilation
- Collects EIP & TSC once every 1M instructions
 - 2% execution overhead
 - Sampling at 100K instructions has negligible effect
- Sampled EIPs are a good approximation for code path

Step 2: Vector Creation

- Create 1 EIPV per interval
 - 100 VTune samples per EIPV
 - EIPV has sample count of each unique EIP in that interval
 - Any EIP not sampled in an interval has zero count
- Instantaneous CPI associated with EIPVs
 - CPI = (End Time stamp Begin Time Stamp) / 100M

- Divide EIPVs into clusters where sum of CPI variance minimized
 - CPI optimally drives EIPV clustering; machine dependent
 - By construction, EIPVs in the same cluster will have similar CPI
- Example: The CPI variance of regression tree clusters is smallest for all possible clusters of size 4
- K-means comparison: Clustering using distance between vectors
 - Does not use CPI values in clustering; machine independent

Computing Relative Error Metric

- In our study, limit the tree size to 50 clusters
 - > 50 clusters does not reduce CPI variance
- Compute CPI variance for all K clusters for each tree T_K (1<=K<=50)
- Relative Error (RE) = weighted sum of cluster CPI variance / overall CPI variance

MICRO 2004

intel

Interpreting Relative Error Metric

- RE represents CPI variance explained by EIPVs
 - RE=0.15 means that 85% of the CPI variance explained by EIPVs.
 - If RE~1 then EIPVs have no relationship with CPI
- Small RE + Small tree size (K)
 - workload behavior exhibits a small number of dominant phases
- If regression tree is large
 - Irrespective of RE, EIPVs and CPI relationship not regulated by few dominant phases
- If CPI variance is small (uniform CPI)
 - No need for regression trees
 - Simple average is acceptable

Regression Tree Results - ODB-C and SjAS

- ODB-C
 - CPI has no correlation with EIPs
- SjAS

- Only 20% of CPI variance explained by EIPs

A Visual Explanation - ODB-C and SjAS

CPI breakdown – ODB-C and SjAS

- L3 misses occur frequently and uniformly
 - 50% of ODB-C CPI, 35% of SjAS CPI due to L3
- L3 misses overwhelmed other microarchitectural bottlenecks
 - CPI determined by L3 miss latency

int_{el},

ODB-H – Q13

int_{el},

ODB-H – Q18

intel.

Quadrant Classification

	Bmark	CPI Var	RE	Bmark	CPI Var	RE	
	ODB-C	0.00	1.01	Q18	0.65	1.00	
	Q1	0.01	0.78	SjAS	0.03	0.90	
	Q19	0.01	0.37	Q7	0.04	0.19	
	Q3	0.01	0.36	Q5	0.03	0.18	
5 ↑	Q16	0.01	0.25	Q10	0.02	0.18	
				Q15	8	0.18	
		U		Q9	0.02	0.17	
				Q4	0.02	0.16	
	Q17	0.01	0.15	Q22	0.04	0.15	
2	Q2	0.01	0.09	Q21	0.02	0.15	
;				Q13	0.02	0.15	
				Q8	881 17	0.12	
				Q20	0.03	0.12	
				Q14	0.08	0.09	
				Q12	0.06	0.06	
				Q6	0.03	0.06	
				Q11	0.02	0.04	
	CPI Variance						

- Classify benchmarks into four quadrants using CPI and RE
- Q-I and Q-II have low CPI variance
 - Relative Error is irrelevant
 - Uniform sampling is OK
 - Q-III : Predicting CPI from EIPVs alone can *not* achieve accuracy
 - Machine dependent parameters needed to capture CPI variations
- Q-IV benchmarks benefit from simple EIP based phase detection

int_{el},

Summary

- Using regression trees to identify optimal EIP-CPI relationship in three server workloads
- ODB-C and SjAS
 - CPI has no correlation with EIPs
 - Large code segments
 - Uniform CPI dominated by L3 misses
- ODB-H exhibit a range of behaviors
 - Small code path
 - Algorithmic changes significantly impact CPI and EIP relation
- Quadrant based classification
 - No single sampling technique effective for all
 - Shows best-suited sampling to accurately capture CPI variance

