
Automatic Synthesis of High-Speed
Processor Simulators

Martin Burtscher and Ilya Ganusov
Computer Systems Laboratory

Cornell University

Automatic Synthesis of High-Speed Processor Simulators

Motivation

n Processor simulators are invaluable tools
n They allow us to cheaply and quickly test ideas

n Problem
n Portable simulators tend to be slow
n Fast simulators are complex and either require

access to source code or symbol table info,
are ISA specific (non-portable), need dynamic
compilation support, or perturb the simulation

Automatic Synthesis of High-Speed Processor Simulators

Functional Simulation

n Simulates correct behavior but not timing
n Used for prototyping, trace generation, etc.

n Needed for fast forwarding (sampling)
n Integral part of cycle-accurate simulators
n Average fast-forwarding and simulation time for

SPECcpu2000 with early SimPoints
n sim-fast + sim-mase: 1.9h + 1.25h = 3.15h
n SyntSim + sim-mase: 0.25h + 1.25h = 1.5h

Automatic Synthesis of High-Speed Processor Simulators

Contributions

n Goal
n Develop a functional simulator that is simple,

portable, and fast (+ supports instrumentation)

n Our approach: SyntSim
n Before every run, statically synthesize a

simulator that is optimized for the given binary
n Combine interpreted- and compiled-mode

simulation for speed and simplicity
n Perform other important optimizations

Automatic Synthesis of High-Speed Processor Simulators

SyntSim’s Features

n Simplicity
n Only a little more complex than an interpreter
n Even works with stripped executables
n Easy to add code to simulate caches, etc.

n Portability
n Emits C source code
n Does not perturb simulation

n Performance
n Only 6.6x slower than native execution on

SPECcpu2000 reference runs (geo. mean)

Automatic Synthesis of High-Speed Processor Simulators

Interpreted-Mode Simulation

n Instruction example
n addq r7, 200, r22
n

n Interpreted code
n Slow simulation speed
n Handles all adds in all

programs
n Compiled once

inst = mem[pc];
op = inst >> 26;
switch (op) {

case ALUop:
rsrc = (inst >> 21) & 31;
imm = (inst >> 13) & 255;
func = (inst >> 5) & 255;
rdst = inst & 31;
switch (func) {

case AddI:
reg[rdst] = reg[rsrc] + imm;
pc++;

rdstop rsrc imm func

Automatic Synthesis of High-Speed Processor Simulators

Compiled-Mode Simulation

n Instruction example
n addq r7, 200, r22
n

n Translated code
n Fast simulation speed
n Only handles this add

in this program
n Incurs synthesis and

compilation overhead

reg[22] = reg[7] + 200;

n Optimizations
n No decoding
n Hardcoded

indices and
immediates

n Other optims.

rdstop rsrc imm func

Automatic Synthesis of High-Speed Processor Simulators

Mixed-Mode Simulation

n Combine interpreted and compiled mode
n Translating the 15% most-frequently executed

static instructions suffices to run 99.9% of the
dynamic instruction in compiled mode

n Remaining instructions are interpreted

n Translating only frequently executed instrs
n Much shorter compilation time
n Smaller executable (better i-cache performance)

Automatic Synthesis of High-Speed Processor Simulators

SyntSim’s Operation

SyntSim

code generator and optimizer

program
executable

optional
profile

instruction
definitions
(C code)

add:
D=A+B;

sub:
D=A-B;

bne:
if (A) goto B;

…

high-speed
simulator
(C code)

compiled-
mode

simulator

interpreter

user options

Automatic Synthesis of High-Speed Processor Simulators

Compiled-Mode Simulator

static void RunCompiled() {
forever {
switch (pc/4) {
case 0x4800372c:
r[2] = RdMem8(r[1]-30768); // 12000dcb8: ldq r2, -30768(r1)
s1 = r[0]; s2 = r[4]; // 12000dcd0: cmplt r0, r4, r0
r[0] = 0; if (s1<s2) r[0] = 1;
ic += 3;
if (0!=r[0]) goto L12000dcf0; // 12000dcdc: bne r0, 12000dcf0
ic += 1;
goto L12000c970; // 12000dcec: br r31, 12000c970

L12000dcf0:
ic += 1;
pc = r[26]&(~3ULL); // 12000dcf0: ret r31, (r26), 1
icnt[fnc(lasttarget)] += ic; ic = 0; lasttarget = pc;
break;

default:
RunInterpreted();

} // switch
} // forever

}

Automatic Synthesis of High-Speed Processor Simulators

Related Work

n MINT 1994
n Dyn. decompile short code sequences into fncs

n QPT/EEL 1994/1995
n Rewrite executable, use quite precise algorithm

for indirect branches, need dyn. translation
n SuperSim 1996

n Static decompilation into C, fully labeled
n UQBT 2000

n Decompilation into special high-level language,
static hooks to interpret untranslated code

Automatic Synthesis of High-Speed Processor Simulators

Evaluation Methodology

n System
n 750MHz 64-bit Alpha 21264A
n 64kB L1, 8MB L2, 2GB RAM
n Tru64 UNIX V5.1

n Benchmarks
n 20 SPECcpu2000 programs, highly optimized
n All F77 and C programs except perlbmk
n Full test, train, and reference runs

Automatic Synthesis of High-Speed Processor Simulators

Profile vs. Heuristic Performance

n Runtimes include
n Synthesis time (0.08s)
n Compilation time (33s)
n Simulation time (3160s)

n Profile based
n 6.6x gmean slowdown

(2x to 16x)

n Heuristic based
n 8.7x gmean slowdown

(2.2x to 66x)
0

2

4

6

8

10

12

14

16

18

20

22

24

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

m
es

a

ar
t

eq
ua

ke

am
m

p

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

si
xt

ra
ck

ap
si

ge
o_

m
ea

n

sl
ow

do
w

n
re

la
tiv

e
to

 n
at

iv
e

ex
ec

ut
io

n.
.

ref runs with ref profiles
ref runs with heuristics

32.8 66.3

Automatic Synthesis of High-Speed Processor Simulators

Mixed-Mode Performance

n Observations
n Better profiles help
n Pure compiled mode is

slower than mixed
mode with good profile
(24% on train runs)

n Best c/i ratio decreases
with quality of profile

n 99.9% compiled mode
is best with self profile
(15% of static instrs)6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

0 0.001 0.01 0.1 1 10
percent interpreted instructions (dynamic)

sl
ow

do
w

n
re

la
tiv

e
to

 n
at

iv
e

ex
ec

ut
io

n
..

ref runs with test profiles
ref runs with train profiles
ref runs with ref profiles
ref runs with heuristics

Automatic Synthesis of High-Speed Processor Simulators

Comparison with Interpreters

n SyntSim’s interpreter
n 2.5x faster than sim-fast

n Mixed mode
n 19x faster than sim-fast
n 8x faster on ref runs

than SyntSim interpreter
(3.6x to 14x)

n 7x faster on train runs
n 3.7x faster on test runs0

25

50

75

100

125

150

175

200

225

250

gz
ip

gc
c

m
cf

pa
rs

er

vo
rt

ex

bz
ip

2

tw
ol

f

m
es

a ar
t

eq
ua

ke

am
m

p

m
gr

id

ap
pl

u

ge
o_

m
ea

n

sl
ow

do
w

n
re

la
tiv

e
to

 n
at

iv
e

ex
ec

ut
io

n.
.

ref runs using mixed mode
ref runs using interpreter
ref runs using sim-fast

282

Automatic Synthesis of High-Speed Processor Simulators

Comparison with ATOM

n Adding instrumentation
n Identical C code
n Instruction count (ic)
n Mem hierarchy (memh)
n Branch predictor (bp)

n Results
n ic: ATOM is 2x faster
n rest: SyntSim is 2.6x

faster than ATOM0

5

10

15

20

25

30

35

ic ic+memh ic+memh+bp

sl
ow

do
w

n
re

la
tiv

e
to

 n
at

iv
e

ex
ec

ut
io

n.
.

SyntSim
ATOM

Automatic Synthesis of High-Speed Processor Simulators

Conclusions

n Presented a fully automated technique to
statically create fast yet portable simulators

n Interleaves compiled- and interpreted-
mode simulation for speed and simplicity

n Only 6.6x slower than native execution
n Only 13x slowdown when counting

instructions and simulating a memory
hierarchy and a branch predictor (warmup)

