Automatic Synthesis of High-Speed
Processor Simulators

Martin Burtscher and Ilya Ganusov
Computer Systems Laboratory
Cornell University

Motivation

= Processor simulators are invaluable tools
= They allow us to cheaply and quickly test ideas

= Problem
= Portable simulators tend to be slow

» Fast simulators are complex and either require
access to source code or symbol table info,
are ISA specific (non-portable), need dynamic
compilation support, or perturb the simulation

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Functional Simulation

= Simulates correct behavior but not timing
= Used for prototyping, trace generation, etc.

= Needed for fast forwarding (sampling)
» Integral part of cycle-accurate simulators

= Average fast-forwarding and simulation time for
SPECcpu2000 with early SimPoints
« sSim-fast + sim-mase: 1.9h + 1.25h = 3.15h
= SyntSim + sim-mase: 0.25h + 1.25h = 1.5h

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Contributions

= Goal

= Develop a functional simulator that is simple,
portable, and fast (+ supports instrumentation)

= Our approach: SyntSim

= Before every run, statically synthesize a
simulator that is optimized for the given binary

= Combine interpreted- and compiled-mode
simulation for speed and simplicity

= Perform other important optimizations

Cornell University Automatic Synthesis of High-Speed Processor Simulators

SyntSim’s Features

= Simplicity
= Only a little more complex than an interpreter
= Even works with stripped executables
« Easy to add code to simulate caches, etc.

= Portability

= Emits C source code

= Does not perturb simulation
= Performance

= Only 6.6x slower than native execution on
SPECcpu2000 reference runs (geo. mean)

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Interpreted-Mode Simulation

s Instruction example st = memipcl;

op = inst >> 26;

= addq r7, 200, r22 switch (op) {

m[op [rsrc] imm func | rdst case ALUop:
rsrc = (inst >> 21) & 31;
= Interpreted code imm = (inst >> 13) & 255;
] . func = (inst >> 5) & 255;
= Slow simulation speed . - it & 31
= Handles all adds in all switch (func) {
programs case AddI:

reg[rdst] = reg[rsrc] + imm;

= Compiled once -

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Compiled-Mode Simulation

= Instruction example
= addq r7, 200, r22 reg[22] = reg[7] + 200;

| op | rsrc imm func rdst

= Optimizations
= Translated code = No decoding
= Fast simulation speed « Hardcoded

= Only handles this add . 1.
in this program indices and

. immediates
= Incurs synthesis and _
compilation overhead = Other optims.

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Mixed-Mode Simulation

= Combine interpreted and compiled mode

= Translating the 15% most-frequently executed
static instructions suffices to run 99.9% of the
dynamic instruction in compiled mode

= Remaining instructions are interpreted

= Translating only frequently executed instrs
= Much shorter compilation time
= Smaller executable (better i-cache performance)

Cornell University Automatic Synthesis of High-Speed Processor Simulators

SyntSim’s Operation

instructon..........= high-speed

definitions program i optional i simulator

(C code) executable i____Q[cgfl_I(_e___j (C code)
v

SyntSim interpreter

; code generator and optimizer compiled-
if (A) goto B; mode
A simulator

—————————————————

) Cornell University Automatic Synthesis of High-Speed Processor Simulators

Compiled-Mode Simulator

forever {
switch (pc/4) {
case 0x4800372c:
r[2] = RdMem8 (r[1]-30768) ; // 12000dcb8: 1ldg r2, -30768(rl)
sl = r[0]; s2 = r[4]; // 12000dcdO0: cmplt r0O, r4, r0
r[0] = 0; if (sl<s2) r[0] = 1;
ic += 3;
if (0!'=r[0]) goto L12000dcfO; // 12000dcdc: bne r0, 12000dcf0
ic += 1;
goto L12000c970; // 12000dcec: br r31l, 12000c970
L12000dcf0:
ic += 1;
pc = r[26] &(~3ULL) ; // 12000dcf0: ret r3l, (r26), 1
icnt[fnc(lasttarget)] += ic; ic = 0; lasttarget = pc;
break;
default:
RunInterpreted() ;
} // switch
} // forever

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Related Work

s MINT 1994
= Dyn. decompile short code sequences into fncs

= QPT/EEL 1994/1995

= Rewrite executable, use quite precise algorithm
for indirect branches, need dyn. translation

= SuperSim 1996
= Static decompilation into C, fully labeled

= UQBT 2000

=« Decompilation into special high-level language,
static hooks to interpret untranslated code

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Evaluation Methodology

= System
= 750MHz 64-bit Alpha 21264A
= 64kB L1, 8MB L2, 2GB RAM
= Tru64 UNIX V5.1

= Benchmarks
= 20 SPECcpu2000 programs, highly optimized
= All F77 and C programs except perlbmk
= Full test, train, and reference runs

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Profile vs. Heuristic Performance

.y oo e = Runtimes include
22 — ~{ Wref runs with ref profiles |/ = Synthesis time (0.08s)
20 - . Oref runs with heuristics |

« Compilation time (33s)
=« Simulation time (3160s)

= Profile based

o
|

o
|

s S, . . N
n

slowdown relative to native execution

2

°] = 6.6X gmean slowdown
M

8 (2x to 16x)

. f

4 = Heuristic based

(2) | | = 8.7X gmean slowdown

§EBBEE B IR IEREI LS (2.2x to 66x)

Cornell University Automatic Synthesis of High-Speed Processor Simulators

slowdown relative to native execution

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

=4 ref runs with test profiles

|

=& ref runs with train profiles
=@- ref runs with ref profiles

- ref runs with heuristics

/7 |

e

A

/

S~ .

) Cornell University

0 0.001 0.01 0.1 1
percent interpreted instructions (dynamic)

10

Mixed-Mode Performance

= Observations
= Better profiles help

=« Pure compiled mode is
slower than mixed
mode with good profile
(24% on train runs)

= Best c¢/i ratio decreases
with quality of profile

= 99.9% compiled mode
is best with self profile
(15% of static instrs)

Automatic Synthesis of High-Speed Processor Simulators

Comparison with Interpreters

250 282 u SyntSIm,S Interpreter
225 = 2.5x faster than sim-fast

M ref runs using mixed mode |-
H iummenea | = Mixed mode
= 19x faster than sim-fast

| | = 8x faster on ref runs
r -] 7 than SyntSim interpreter

iy }E (3.6x to 14x)

} = /X faster on train runs
) Cornell University Automatic Synthesis of High-Speed Processor Simulators

N
o
o

-

~

(&)
|

—

0

o
|

—

o

o
|

N
ol
\

slowdown relative to native execution
—
)
()]
]

1 = 3.7x faster on test runs

gzip
mcf =
art

o & &

| \

|
goc Bl |

-
bzipZT_ | |
tonfP—‘—L\

-

|

|

|
mgrid ?_‘ﬁ‘
a|0|olu4r_‘—L |

parser [
geo_mean

mesa
equake
ammp

Comparison with ATOM

= Adding instrumentation
I = Identical C code

ATOM « Instruction count (ic)

= Mem hierarchy (memh)
= Branch predictor (bp)

w
()]

w
o

N
(@]

N
o

—_
[@)]

= Results
= iC: ATOM is 2x faster

5 = rest: SyntSim is 2.6x
faster than ATOM

N
o

slowdown relative to native execution

ic ictmemh ictmemh+bp

Cornell University Automatic Synthesis of High-Speed Processor Simulators

Conclusions

= Presented a fully automated technique to
statically create fast yet portable simulators

= Interleaves compiled- and interpreted-
mode simulation for speed and simplicity

= Only 6.6x slower than native execution

= Only 13x slowdown when counting
instructions and simulating a memory
hierarchy and a branch predictor (warmup)

Cornell University Automatic Synthesis of High-Speed Processor Simulators

