Register Packing

Exploiting Narrow-Width Operands
for Reducing Register File Pressure

Oguz BErgin*, Deniz Balkan, Kanad Ghose,
Dmitry Ponomarev

Department of Computer Science

State University of New York - Binghamton

*currently with Intel Barcelona Research Center

Outline

B [ntroduction and motivations

m Register Packing:

= Conservative Packing

m Speculative Packing
® Results and discussions

® Conclusion

Introduction

m [mplications of larger instruction windows
m [ncreases register pressure
m Generally dealt with by using large register files
m [arge register files have:
m Higher access time or require multi-cycle access

m Higher energy dissipation

m Need to decrease the register file pressure

Motivations

m Many generated results have a lot of leading
ZErOS Of ONES

m Fewer bits are needed to represent the value

m Register files are thus not used efficiently

“Narrow” Values

m Prefixes of all 1s can be replaced with a single 1 and
the pretixes of all Os can be replaced with a single 0.

m 11111111
= 00000000
= 00000001
® 11111101
m 10101001

—>

—>

—>

—>

—>

1 (width = 1)
0 (width = 1)
01 (width = 2)
101 (width = 3)
10101001 (width = 8)

m Narrow width operands do not use the full width of a

register

Distribution of Widths

wupwise

INT Average
FP Average

Total Average

@ 16 bits @ 32 bits O 48 bits 0O 64 bits

Exploiting Narrow Values

m Packing multiple results into a single physical
register improves performance as the effective
number of physical registers go up

H 32

32
- 64

Main Challenges

B Value widths are not known until the results are
actually produced

m Register allocation made to a result can change if the
value turns out to be narrow

m Consumers of the result have to be informed if it is
reallocated to a different register based on its width
m [f multiple results are packed into a common
register some means must be provided to locate
them unambiguously

Detecting Value Widths

m Have to quantize the widths to simplity
implementation

® Chunks of bytes or double bytes
m Width detection logic 1s embedded into the final
stages of an execution unit

® Techniques for detecting widths are well known —
[Leading Zero Detectors in floating point units

Storing Narrow Values in Registers

m Parts of a result do not need to be stored
contiguously.

Upper half of Lower half of
narrow result B narrow result B

p7 _hﬁ_
1 1

Upper half of Lower half of
narrow result A narrow result A

Addressing Narrow Values

m Use a bit mask to specity partitions holding
components of the value along with the register
address

Address of A = P7, 1001

P7 T___?

Upper half of Lower half of
narrow result A narrow result A

Register Read Logic

Bitcell Array
| Partition2 | Partition1 ||

"k 41 vk 11 1Kk

M\
M\

4:1 sign
bit MUX*

4\Yg
| |
3:1 MUX 4:1 MUX
g k g k

Sense Amp Array

’|' aK *includes 1>k expander

Register Packing Alternatives

m Conservative Packing

m Assume result to use the full width of a
register at allocation time

m Speculative Packing

m Predict the result width at allocation time and
allocate accordingly

Conservative Packing

m [nitially allocate a full-width register

m [f the result turns out to be narrow:
m Release the unneeded parts to the free pool

m If there is a suitable partition: reallocate.

Conservative Packing

Instruction I is dispatched:

P2 I N D

= (| |

Free Partition Allocated Partition

Conservative Packing

Instruction I is dispatched:
P2 1s allocated

P2 I N D

= (| |

Free Partition Allocated Partition

Conservative Packing

Instruction I is dispatched:
Width of result = 2 slots
P5’s upper half is allocated and P2 1s released

P2 I N D

= (| |

Free Partition Allocated Partition

Taking Care of Reassignments

B Tswo broadcasts are needed

m [irst broadcast uses old tag (=originally assigned
register 1d) to inform dependents that the result
will be available shortly

m Second broadcast drives the old tag and the new
tag (= newly-assigned register id + “parts” bits)
® old tag is used to locate dependents

® new tag picked up by matching entries and used later
to read out source value from the register file

Tag Broadcast for Wakeup

Tag Bus

F t1
ug;lton P1.1001 | P2. 1111
Consumer

I— P2, 1111 Ee

Producer

Issue Queue

Tag Rebroadcast Example

New Tag

Old Tag

P5.1100 P2. 1111
Pr()(%ucer

Functt
Consumetr

Issue Queue

IPCs for Conservative Packing

INT Average
FP Average
Total Average |

O Base m 8 tag buses O 4 tag buses O 1 cycle stall on tag re-broadcasts

Conservative Packing: Observations

m FExtra broadcast is needed for all results that
don’t use all of the partitions within a register

m Performance is heavily constrained by the
number of broadcast buses

m 6% for 4 buses
m 14% for 8 buses

m -26% for 4 buses assuming an extra cycle delay for
width estimation

Speculative Packing

m Predict the width of the result and allocate
accordingly

m Width overprediction: two choices here

m Release unused parts of register — rebroadcast only
the parts bits

= Do not release unused parts — no rebroadcast 1s
needed

m Width underprediction: requires reallocation and
an update broadcast

Width Predictor

m Width prediction bits are maintained within the
.1 I-Cache

m Prediction bits do no percolate down the
memory hierarchy from 1.1

m Default prediction is full width

m Prediction bits are updated only on
mispredictions

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

bzip2
gap
gcc
gzip
mcf
parser
twolf
vpr
ammp
applu
apsi
art
equake
mesa
mgrid

O Prediction accuracy when counting the overpredictions as mispredictions
B Prediction accuracy when counting the owerpredictions as correct predictions

swim

wupwise

INT Average

FP Average

Total Average

Deadlock Avoidance

m [f there is a misprediction and there are no free

register parts available:

m Stall writeback and wait

m This can still cause a deadlock if the instruction is the
oldest in the pipeline

m Create an exception and squash all instructions
younger than the instruction (including itself)

m Steal a register from a younger instruction and
squash all instructions coming after the owner

Comparison of Deadlock Avoidance
Schemes

wupwise
INT Average
FP Average

Total Average

@ flush all m steal from younger

Speedups of Speculative Packing

INT Average
FP Average

O Base m 8 tag buses O 4 tag buses O 1 cycle stall on tag re-broadcasts

abelany [e1ol

abetany 44

abelany NI

Jjom}

Jasred

O Base 64+64 B Register Packing 64+64 0O Base 128+128

Jow

dizb

2206

ety
k=
4
Q
xR
al
G
O
P
Q
c
S
<
=
3=
Pt
D
al

deb

Conclusions

m We proposed and evaluated two register packing
schemes

m Because of the high number of tag broadcasts
Conservative Packing suffers in performance

m Speculative Packing results in 15% IPC
improvement on the average with 64 tp and 64
int registers (with tag bus sharing)

Thank You!

Oguz |

Ergin

Department of Computer Science
State University of New York - Binghamton

www.cs.binghamton.edu/~oguz

Intel Barcelona Research Center

